Molecular evidence for an active endogenous microbiome beneath glacial ice

Geologic, chemical and isotopic evidence indicate that Earth has experienced numerous intervals of widespread glaciation throughout its history, with roughly 11% of present day Earth’s land surface covered in ice. Despite the pervasive nature of glacial ice both today and in Earth’s past and the pot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2013-07, Vol.7 (7), p.1402-1412
Hauptverfasser: Hamilton, Trinity L, Peters, John W, Skidmore, Mark L, Boyd, Eric S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1412
container_issue 7
container_start_page 1402
container_title The ISME Journal
container_volume 7
creator Hamilton, Trinity L
Peters, John W
Skidmore, Mark L
Boyd, Eric S
description Geologic, chemical and isotopic evidence indicate that Earth has experienced numerous intervals of widespread glaciation throughout its history, with roughly 11% of present day Earth’s land surface covered in ice. Despite the pervasive nature of glacial ice both today and in Earth’s past and the potential contribution of these systems to global biogeochemical cycles, the composition and phylogenetic structure of an active microbial community in subglacial systems has yet to be described. Here, using RNA-based approaches, we demonstrate the presence of active and endogenous archaeal, bacterial and eukaryal assemblages in cold (0–1 °C) subglacial sediments sampled from Robertson Glacier, Alberta, Canada. Patterns in the phylogenetic structure and composition of subglacial sediment small subunit (SSU) ribosomal RNA (rRNA) assemblages indicate greater diversity and evenness than in glacial surface environments, possibly due to facilitative or competitive interactions among populations in the subglacial environment. The combination of phylogenetically more even and more diverse assemblages in the subglacial environment suggests minimal niche overlap and optimization to capture a wider spectrum of the limited nutrients and chemical energy made available from weathering of bedrock minerals. The prevalence of SSU rRNA affiliated with lithoautotrophic bacteria, autotrophic methane producing archaea and heterotrophic eukarya in the subglacial environment is consistent with this hypothesis and suggests an active contribution to the global carbon cycle. Collectively, our findings demonstrate that subglacial environments harbor endogenous active ecosystems that have the potential to impact global biogeochemical cycles over extended periods of time.
doi_str_mv 10.1038/ismej.2013.31
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3695297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1412502033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-89ea61bff4156446803d4d8154257e753f5e5c6733ad16f7549c88f6493bd0343</originalsourceid><addsrcrecordid>eNqFkc2LFDEQxRtR3HX16FUCXrz0mKTy1RdBlvWLFS96Dul09WyG7mRNugf8780467CK4KkK6serevWa5jmjG0bBvA5lxt2GUwYbYA-ac6YlazVo-vDUK37WPCllR6nUSunHzRkHYRQX3Xnz6XOa0K-TywT3YcDokYwpExeJ80vYI8E4pC3GtBYyB59TH9KMpMeIbrkh28n54CYSPD5tHo1uKvjsrl40395dfb380F5_ef_x8u1166WEpTUdOsX6cRRMKiGUoTCIwTApuNSoJYwSpVcawA1MjVqKzhszKtFBP1AQcNG8Oererv2Mg8e4ZDfZ2xxml3_Y5IL9cxLDjd2mvQXVSd7pKvDqTiCn7yuWxc6heJwmF7HatEwwLimnAP9HQXOqNVVdRV_-he7SmmP9xIGiRgvTyUq1R6p-spSM4-luRu0hUPsrUHsI1AKr_Iv7Zk_07wQrsDkCpY7iFvO9tf9U_Ami6Ksw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370874895</pqid></control><display><type>article</type><title>Molecular evidence for an active endogenous microbiome beneath glacial ice</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Hamilton, Trinity L ; Peters, John W ; Skidmore, Mark L ; Boyd, Eric S</creator><creatorcontrib>Hamilton, Trinity L ; Peters, John W ; Skidmore, Mark L ; Boyd, Eric S</creatorcontrib><description>Geologic, chemical and isotopic evidence indicate that Earth has experienced numerous intervals of widespread glaciation throughout its history, with roughly 11% of present day Earth’s land surface covered in ice. Despite the pervasive nature of glacial ice both today and in Earth’s past and the potential contribution of these systems to global biogeochemical cycles, the composition and phylogenetic structure of an active microbial community in subglacial systems has yet to be described. Here, using RNA-based approaches, we demonstrate the presence of active and endogenous archaeal, bacterial and eukaryal assemblages in cold (0–1 °C) subglacial sediments sampled from Robertson Glacier, Alberta, Canada. Patterns in the phylogenetic structure and composition of subglacial sediment small subunit (SSU) ribosomal RNA (rRNA) assemblages indicate greater diversity and evenness than in glacial surface environments, possibly due to facilitative or competitive interactions among populations in the subglacial environment. The combination of phylogenetically more even and more diverse assemblages in the subglacial environment suggests minimal niche overlap and optimization to capture a wider spectrum of the limited nutrients and chemical energy made available from weathering of bedrock minerals. The prevalence of SSU rRNA affiliated with lithoautotrophic bacteria, autotrophic methane producing archaea and heterotrophic eukarya in the subglacial environment is consistent with this hypothesis and suggests an active contribution to the global carbon cycle. Collectively, our findings demonstrate that subglacial environments harbor endogenous active ecosystems that have the potential to impact global biogeochemical cycles over extended periods of time.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2013.31</identifier><identifier>PMID: 23486249</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326/2565/2134 ; 631/326/47 ; Archaea ; Archaea - genetics ; Archaea - physiology ; Bacteria - classification ; Bacteria - genetics ; Bacterial Physiological Phenomena ; Bedrock ; Biodiversity ; Biogeochemical cycles ; Biogeochemistry ; Biomedical and Life Sciences ; Canada ; Carbon cycle ; Earth ; Ecology ; Environmental Microbiology ; Eukaryota - genetics ; Eukaryota - physiology ; Evolutionary Biology ; Glaciation ; Glaciers ; Ice ; Ice Cover - chemistry ; Ice Cover - microbiology ; Life Sciences ; Methane ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microbiota - genetics ; Microbiota - physiology ; Minerals ; Niches ; Nutrients ; Original ; original-article ; RNA, Ribosomal - genetics ; RNA, Ribosomal, 16S - genetics ; Sediments ; Weathering</subject><ispartof>The ISME Journal, 2013-07, Vol.7 (7), p.1402-1412</ispartof><rights>The Author(s) 2013</rights><rights>Copyright Nature Publishing Group Jul 2013</rights><rights>Copyright © 2013 International Society for Microbial Ecology 2013 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-89ea61bff4156446803d4d8154257e753f5e5c6733ad16f7549c88f6493bd0343</citedby><cites>FETCH-LOGICAL-c553t-89ea61bff4156446803d4d8154257e753f5e5c6733ad16f7549c88f6493bd0343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695297/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695297/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23486249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamilton, Trinity L</creatorcontrib><creatorcontrib>Peters, John W</creatorcontrib><creatorcontrib>Skidmore, Mark L</creatorcontrib><creatorcontrib>Boyd, Eric S</creatorcontrib><title>Molecular evidence for an active endogenous microbiome beneath glacial ice</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Geologic, chemical and isotopic evidence indicate that Earth has experienced numerous intervals of widespread glaciation throughout its history, with roughly 11% of present day Earth’s land surface covered in ice. Despite the pervasive nature of glacial ice both today and in Earth’s past and the potential contribution of these systems to global biogeochemical cycles, the composition and phylogenetic structure of an active microbial community in subglacial systems has yet to be described. Here, using RNA-based approaches, we demonstrate the presence of active and endogenous archaeal, bacterial and eukaryal assemblages in cold (0–1 °C) subglacial sediments sampled from Robertson Glacier, Alberta, Canada. Patterns in the phylogenetic structure and composition of subglacial sediment small subunit (SSU) ribosomal RNA (rRNA) assemblages indicate greater diversity and evenness than in glacial surface environments, possibly due to facilitative or competitive interactions among populations in the subglacial environment. The combination of phylogenetically more even and more diverse assemblages in the subglacial environment suggests minimal niche overlap and optimization to capture a wider spectrum of the limited nutrients and chemical energy made available from weathering of bedrock minerals. The prevalence of SSU rRNA affiliated with lithoautotrophic bacteria, autotrophic methane producing archaea and heterotrophic eukarya in the subglacial environment is consistent with this hypothesis and suggests an active contribution to the global carbon cycle. Collectively, our findings demonstrate that subglacial environments harbor endogenous active ecosystems that have the potential to impact global biogeochemical cycles over extended periods of time.</description><subject>631/326/2565/2134</subject><subject>631/326/47</subject><subject>Archaea</subject><subject>Archaea - genetics</subject><subject>Archaea - physiology</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacterial Physiological Phenomena</subject><subject>Bedrock</subject><subject>Biodiversity</subject><subject>Biogeochemical cycles</subject><subject>Biogeochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Canada</subject><subject>Carbon cycle</subject><subject>Earth</subject><subject>Ecology</subject><subject>Environmental Microbiology</subject><subject>Eukaryota - genetics</subject><subject>Eukaryota - physiology</subject><subject>Evolutionary Biology</subject><subject>Glaciation</subject><subject>Glaciers</subject><subject>Ice</subject><subject>Ice Cover - chemistry</subject><subject>Ice Cover - microbiology</subject><subject>Life Sciences</subject><subject>Methane</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microbiota - genetics</subject><subject>Microbiota - physiology</subject><subject>Minerals</subject><subject>Niches</subject><subject>Nutrients</subject><subject>Original</subject><subject>original-article</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Sediments</subject><subject>Weathering</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc2LFDEQxRtR3HX16FUCXrz0mKTy1RdBlvWLFS96Dul09WyG7mRNugf8780467CK4KkK6serevWa5jmjG0bBvA5lxt2GUwYbYA-ac6YlazVo-vDUK37WPCllR6nUSunHzRkHYRQX3Xnz6XOa0K-TywT3YcDokYwpExeJ80vYI8E4pC3GtBYyB59TH9KMpMeIbrkh28n54CYSPD5tHo1uKvjsrl40395dfb380F5_ef_x8u1166WEpTUdOsX6cRRMKiGUoTCIwTApuNSoJYwSpVcawA1MjVqKzhszKtFBP1AQcNG8Oererv2Mg8e4ZDfZ2xxml3_Y5IL9cxLDjd2mvQXVSd7pKvDqTiCn7yuWxc6heJwmF7HatEwwLimnAP9HQXOqNVVdRV_-he7SmmP9xIGiRgvTyUq1R6p-spSM4-luRu0hUPsrUHsI1AKr_Iv7Zk_07wQrsDkCpY7iFvO9tf9U_Ami6Ksw</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Hamilton, Trinity L</creator><creator>Peters, John W</creator><creator>Skidmore, Mark L</creator><creator>Boyd, Eric S</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130701</creationdate><title>Molecular evidence for an active endogenous microbiome beneath glacial ice</title><author>Hamilton, Trinity L ; Peters, John W ; Skidmore, Mark L ; Boyd, Eric S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-89ea61bff4156446803d4d8154257e753f5e5c6733ad16f7549c88f6493bd0343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/326/2565/2134</topic><topic>631/326/47</topic><topic>Archaea</topic><topic>Archaea - genetics</topic><topic>Archaea - physiology</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacterial Physiological Phenomena</topic><topic>Bedrock</topic><topic>Biodiversity</topic><topic>Biogeochemical cycles</topic><topic>Biogeochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Canada</topic><topic>Carbon cycle</topic><topic>Earth</topic><topic>Ecology</topic><topic>Environmental Microbiology</topic><topic>Eukaryota - genetics</topic><topic>Eukaryota - physiology</topic><topic>Evolutionary Biology</topic><topic>Glaciation</topic><topic>Glaciers</topic><topic>Ice</topic><topic>Ice Cover - chemistry</topic><topic>Ice Cover - microbiology</topic><topic>Life Sciences</topic><topic>Methane</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microbiota - genetics</topic><topic>Microbiota - physiology</topic><topic>Minerals</topic><topic>Niches</topic><topic>Nutrients</topic><topic>Original</topic><topic>original-article</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Sediments</topic><topic>Weathering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamilton, Trinity L</creatorcontrib><creatorcontrib>Peters, John W</creatorcontrib><creatorcontrib>Skidmore, Mark L</creatorcontrib><creatorcontrib>Boyd, Eric S</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamilton, Trinity L</au><au>Peters, John W</au><au>Skidmore, Mark L</au><au>Boyd, Eric S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular evidence for an active endogenous microbiome beneath glacial ice</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>7</volume><issue>7</issue><spage>1402</spage><epage>1412</epage><pages>1402-1412</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Geologic, chemical and isotopic evidence indicate that Earth has experienced numerous intervals of widespread glaciation throughout its history, with roughly 11% of present day Earth’s land surface covered in ice. Despite the pervasive nature of glacial ice both today and in Earth’s past and the potential contribution of these systems to global biogeochemical cycles, the composition and phylogenetic structure of an active microbial community in subglacial systems has yet to be described. Here, using RNA-based approaches, we demonstrate the presence of active and endogenous archaeal, bacterial and eukaryal assemblages in cold (0–1 °C) subglacial sediments sampled from Robertson Glacier, Alberta, Canada. Patterns in the phylogenetic structure and composition of subglacial sediment small subunit (SSU) ribosomal RNA (rRNA) assemblages indicate greater diversity and evenness than in glacial surface environments, possibly due to facilitative or competitive interactions among populations in the subglacial environment. The combination of phylogenetically more even and more diverse assemblages in the subglacial environment suggests minimal niche overlap and optimization to capture a wider spectrum of the limited nutrients and chemical energy made available from weathering of bedrock minerals. The prevalence of SSU rRNA affiliated with lithoautotrophic bacteria, autotrophic methane producing archaea and heterotrophic eukarya in the subglacial environment is consistent with this hypothesis and suggests an active contribution to the global carbon cycle. Collectively, our findings demonstrate that subglacial environments harbor endogenous active ecosystems that have the potential to impact global biogeochemical cycles over extended periods of time.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23486249</pmid><doi>10.1038/ismej.2013.31</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2013-07, Vol.7 (7), p.1402-1412
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3695297
source MEDLINE; Access via Oxford University Press (Open Access Collection); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 631/326/2565/2134
631/326/47
Archaea
Archaea - genetics
Archaea - physiology
Bacteria - classification
Bacteria - genetics
Bacterial Physiological Phenomena
Bedrock
Biodiversity
Biogeochemical cycles
Biogeochemistry
Biomedical and Life Sciences
Canada
Carbon cycle
Earth
Ecology
Environmental Microbiology
Eukaryota - genetics
Eukaryota - physiology
Evolutionary Biology
Glaciation
Glaciers
Ice
Ice Cover - chemistry
Ice Cover - microbiology
Life Sciences
Methane
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microbiota - genetics
Microbiota - physiology
Minerals
Niches
Nutrients
Original
original-article
RNA, Ribosomal - genetics
RNA, Ribosomal, 16S - genetics
Sediments
Weathering
title Molecular evidence for an active endogenous microbiome beneath glacial ice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20evidence%20for%20an%20active%20endogenous%20microbiome%20beneath%20glacial%20ice&rft.jtitle=The%20ISME%20Journal&rft.au=Hamilton,%20Trinity%20L&rft.date=2013-07-01&rft.volume=7&rft.issue=7&rft.spage=1402&rft.epage=1412&rft.pages=1402-1412&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2013.31&rft_dat=%3Cproquest_pubme%3E1412502033%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1370874895&rft_id=info:pmid/23486249&rfr_iscdi=true