Processing-Independent CRISPR RNAs Limit Natural Transformation in Neisseria meningitidis

CRISPR interference confers adaptive, sequence-based immunity against viruses and plasmids and is specified by CRISPR RNAs (crRNAs) that are transcribed and processed from spacer-repeat units. Pre-crRNA processing is essential for CRISPR interference in all systems studied thus far. Here, our studie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2013-05, Vol.50 (4), p.488-503
Hauptverfasser: Zhang, Yan, Heidrich, Nadja, Ampattu, Biju Joseph, Gunderson, Carl W., Seifert, H. Steven, Schoen, Christoph, Vogel, Jörg, Sontheimer, Erik J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 503
container_issue 4
container_start_page 488
container_title Molecular cell
container_volume 50
creator Zhang, Yan
Heidrich, Nadja
Ampattu, Biju Joseph
Gunderson, Carl W.
Seifert, H. Steven
Schoen, Christoph
Vogel, Jörg
Sontheimer, Erik J.
description CRISPR interference confers adaptive, sequence-based immunity against viruses and plasmids and is specified by CRISPR RNAs (crRNAs) that are transcribed and processed from spacer-repeat units. Pre-crRNA processing is essential for CRISPR interference in all systems studied thus far. Here, our studies of crRNA biogenesis and CRISPR interference in naturally competent Neisseria spp. reveal a unique crRNA maturation pathway in which crRNAs are transcribed from promoters that are embedded within each repeat, yielding crRNA 5′ ends formed by transcription and not by processing. Although crRNA 3′ end formation involves RNase III and trans-encoded tracrRNA, as in other type II CRISPR systems, this processing is dispensable for interference. The meningococcal pathway is the most streamlined CRISPR/Cas system characterized to date. Endogenous CRISPR spacers limit natural transformation, which is the primary source of genetic variation that contributes to immune evasion, antibiotic resistance, and virulence in the human pathogen N. meningitidis. •Unlike previously described CRISPRs, each Neisseria repeat carries its own promoter•Pre-crRNA processing is dispensable for CRISPR interference in Neisseria spp.•CRISPR interference blocks natural transformation in the pathogen N. meningitidis•Neisseria CRISPR/Cas systems are the most streamlined observed to date
doi_str_mv 10.1016/j.molcel.2013.05.001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3694421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S109727651300364X</els_id><sourcerecordid>1356390280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-bd4887d434319e7e46fd4eb9352dcba3ed2686cb91f0536a712a3748b7775f883</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRCIlsI_QJAjlwQ7dmznglSt-FhptVTb9sDJcuzJMqvEXuxsJf49rnbbwoXLeCS_efPmvaJ4S0lNCRUfd_UURgtj3RDKatLWhNBnxTklnaw4Ffz5qW-kaM-KVyntMoC3qntZnDVMEqGoOi9-XMVgISX022rpHewhFz-Xi83y-mpTbtaXqVzhhHO5NvMhmrG8icanIcTJzBh8ib5cA6YEEU05gc9EOKPD9Lp4MZgxwZvTe1Hcfvl8s_hWrb5_XS4uV5XlSs5V77hS0nHGGe1AAheD49B3rG2c7Q0D1wglbN_RgbRMGEkbwyRXvZSyHZRiF8WnI-_-0E_gbFafZep9xMnE3zoY1P_-ePypt-FOM9Fx3tBM8OFEEMOvA6RZT5iysaPxEA5JU9YK1pFGkQzlR6iNIaUIw-MaSvR9Knqnj6no-1Q0aXU2PY-9-1vi49BDDBnw_ggYTNBmGzHp2-vMIAghDc13P10J2co7hKiTRfAWHEaws3YB_6_hD-f-qkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1356390280</pqid></control><display><type>article</type><title>Processing-Independent CRISPR RNAs Limit Natural Transformation in Neisseria meningitidis</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Yan ; Heidrich, Nadja ; Ampattu, Biju Joseph ; Gunderson, Carl W. ; Seifert, H. Steven ; Schoen, Christoph ; Vogel, Jörg ; Sontheimer, Erik J.</creator><creatorcontrib>Zhang, Yan ; Heidrich, Nadja ; Ampattu, Biju Joseph ; Gunderson, Carl W. ; Seifert, H. Steven ; Schoen, Christoph ; Vogel, Jörg ; Sontheimer, Erik J.</creatorcontrib><description>CRISPR interference confers adaptive, sequence-based immunity against viruses and plasmids and is specified by CRISPR RNAs (crRNAs) that are transcribed and processed from spacer-repeat units. Pre-crRNA processing is essential for CRISPR interference in all systems studied thus far. Here, our studies of crRNA biogenesis and CRISPR interference in naturally competent Neisseria spp. reveal a unique crRNA maturation pathway in which crRNAs are transcribed from promoters that are embedded within each repeat, yielding crRNA 5′ ends formed by transcription and not by processing. Although crRNA 3′ end formation involves RNase III and trans-encoded tracrRNA, as in other type II CRISPR systems, this processing is dispensable for interference. The meningococcal pathway is the most streamlined CRISPR/Cas system characterized to date. Endogenous CRISPR spacers limit natural transformation, which is the primary source of genetic variation that contributes to immune evasion, antibiotic resistance, and virulence in the human pathogen N. meningitidis. •Unlike previously described CRISPRs, each Neisseria repeat carries its own promoter•Pre-crRNA processing is dispensable for CRISPR interference in Neisseria spp.•CRISPR interference blocks natural transformation in the pathogen N. meningitidis•Neisseria CRISPR/Cas systems are the most streamlined observed to date</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2013.05.001</identifier><identifier>PMID: 23706818</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>antibiotic resistance ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Base Sequence ; biogenesis ; Genes, Bacterial - genetics ; genetic variation ; Host-Pathogen Interactions ; Humans ; immune evasion ; immunity ; Inverted Repeat Sequences - genetics ; Meningococcal Infections - microbiology ; Models, Genetic ; Neisseria ; Neisseria meningitidis ; Neisseria meningitidis - genetics ; Neisseria meningitidis - pathogenicity ; Neisseria meningitidis - physiology ; pathogens ; plasmids ; Promoter Regions, Genetic - genetics ; Ribonuclease III - metabolism ; ribonucleases ; RNA ; RNA Processing, Post-Transcriptional ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; RNases ; Sequence Homology, Nucleic Acid ; Transcription, Genetic ; Transformation, Bacterial ; virulence ; Virulence - genetics ; viruses</subject><ispartof>Molecular cell, 2013-05, Vol.50 (4), p.488-503</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>2013 Elsevier Inc. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-bd4887d434319e7e46fd4eb9352dcba3ed2686cb91f0536a712a3748b7775f883</citedby><cites>FETCH-LOGICAL-c487t-bd4887d434319e7e46fd4eb9352dcba3ed2686cb91f0536a712a3748b7775f883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2013.05.001$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23706818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Heidrich, Nadja</creatorcontrib><creatorcontrib>Ampattu, Biju Joseph</creatorcontrib><creatorcontrib>Gunderson, Carl W.</creatorcontrib><creatorcontrib>Seifert, H. Steven</creatorcontrib><creatorcontrib>Schoen, Christoph</creatorcontrib><creatorcontrib>Vogel, Jörg</creatorcontrib><creatorcontrib>Sontheimer, Erik J.</creatorcontrib><title>Processing-Independent CRISPR RNAs Limit Natural Transformation in Neisseria meningitidis</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>CRISPR interference confers adaptive, sequence-based immunity against viruses and plasmids and is specified by CRISPR RNAs (crRNAs) that are transcribed and processed from spacer-repeat units. Pre-crRNA processing is essential for CRISPR interference in all systems studied thus far. Here, our studies of crRNA biogenesis and CRISPR interference in naturally competent Neisseria spp. reveal a unique crRNA maturation pathway in which crRNAs are transcribed from promoters that are embedded within each repeat, yielding crRNA 5′ ends formed by transcription and not by processing. Although crRNA 3′ end formation involves RNase III and trans-encoded tracrRNA, as in other type II CRISPR systems, this processing is dispensable for interference. The meningococcal pathway is the most streamlined CRISPR/Cas system characterized to date. Endogenous CRISPR spacers limit natural transformation, which is the primary source of genetic variation that contributes to immune evasion, antibiotic resistance, and virulence in the human pathogen N. meningitidis. •Unlike previously described CRISPRs, each Neisseria repeat carries its own promoter•Pre-crRNA processing is dispensable for CRISPR interference in Neisseria spp.•CRISPR interference blocks natural transformation in the pathogen N. meningitidis•Neisseria CRISPR/Cas systems are the most streamlined observed to date</description><subject>antibiotic resistance</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>biogenesis</subject><subject>Genes, Bacterial - genetics</subject><subject>genetic variation</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>immune evasion</subject><subject>immunity</subject><subject>Inverted Repeat Sequences - genetics</subject><subject>Meningococcal Infections - microbiology</subject><subject>Models, Genetic</subject><subject>Neisseria</subject><subject>Neisseria meningitidis</subject><subject>Neisseria meningitidis - genetics</subject><subject>Neisseria meningitidis - pathogenicity</subject><subject>Neisseria meningitidis - physiology</subject><subject>pathogens</subject><subject>plasmids</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Ribonuclease III - metabolism</subject><subject>ribonucleases</subject><subject>RNA</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>RNases</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Transcription, Genetic</subject><subject>Transformation, Bacterial</subject><subject>virulence</subject><subject>Virulence - genetics</subject><subject>viruses</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQjRCIlsI_QJAjlwQ7dmznglSt-FhptVTb9sDJcuzJMqvEXuxsJf49rnbbwoXLeCS_efPmvaJ4S0lNCRUfd_UURgtj3RDKatLWhNBnxTklnaw4Ffz5qW-kaM-KVyntMoC3qntZnDVMEqGoOi9-XMVgISX022rpHewhFz-Xi83y-mpTbtaXqVzhhHO5NvMhmrG8icanIcTJzBh8ib5cA6YEEU05gc9EOKPD9Lp4MZgxwZvTe1Hcfvl8s_hWrb5_XS4uV5XlSs5V77hS0nHGGe1AAheD49B3rG2c7Q0D1wglbN_RgbRMGEkbwyRXvZSyHZRiF8WnI-_-0E_gbFafZep9xMnE3zoY1P_-ePypt-FOM9Fx3tBM8OFEEMOvA6RZT5iysaPxEA5JU9YK1pFGkQzlR6iNIaUIw-MaSvR9Knqnj6no-1Q0aXU2PY-9-1vi49BDDBnw_ggYTNBmGzHp2-vMIAghDc13P10J2co7hKiTRfAWHEaws3YB_6_hD-f-qkQ</recordid><startdate>20130523</startdate><enddate>20130523</enddate><creator>Zhang, Yan</creator><creator>Heidrich, Nadja</creator><creator>Ampattu, Biju Joseph</creator><creator>Gunderson, Carl W.</creator><creator>Seifert, H. Steven</creator><creator>Schoen, Christoph</creator><creator>Vogel, Jörg</creator><creator>Sontheimer, Erik J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130523</creationdate><title>Processing-Independent CRISPR RNAs Limit Natural Transformation in Neisseria meningitidis</title><author>Zhang, Yan ; Heidrich, Nadja ; Ampattu, Biju Joseph ; Gunderson, Carl W. ; Seifert, H. Steven ; Schoen, Christoph ; Vogel, Jörg ; Sontheimer, Erik J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-bd4887d434319e7e46fd4eb9352dcba3ed2686cb91f0536a712a3748b7775f883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>antibiotic resistance</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>biogenesis</topic><topic>Genes, Bacterial - genetics</topic><topic>genetic variation</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>immune evasion</topic><topic>immunity</topic><topic>Inverted Repeat Sequences - genetics</topic><topic>Meningococcal Infections - microbiology</topic><topic>Models, Genetic</topic><topic>Neisseria</topic><topic>Neisseria meningitidis</topic><topic>Neisseria meningitidis - genetics</topic><topic>Neisseria meningitidis - pathogenicity</topic><topic>Neisseria meningitidis - physiology</topic><topic>pathogens</topic><topic>plasmids</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Ribonuclease III - metabolism</topic><topic>ribonucleases</topic><topic>RNA</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>RNases</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Transcription, Genetic</topic><topic>Transformation, Bacterial</topic><topic>virulence</topic><topic>Virulence - genetics</topic><topic>viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Heidrich, Nadja</creatorcontrib><creatorcontrib>Ampattu, Biju Joseph</creatorcontrib><creatorcontrib>Gunderson, Carl W.</creatorcontrib><creatorcontrib>Seifert, H. Steven</creatorcontrib><creatorcontrib>Schoen, Christoph</creatorcontrib><creatorcontrib>Vogel, Jörg</creatorcontrib><creatorcontrib>Sontheimer, Erik J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yan</au><au>Heidrich, Nadja</au><au>Ampattu, Biju Joseph</au><au>Gunderson, Carl W.</au><au>Seifert, H. Steven</au><au>Schoen, Christoph</au><au>Vogel, Jörg</au><au>Sontheimer, Erik J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Processing-Independent CRISPR RNAs Limit Natural Transformation in Neisseria meningitidis</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2013-05-23</date><risdate>2013</risdate><volume>50</volume><issue>4</issue><spage>488</spage><epage>503</epage><pages>488-503</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>CRISPR interference confers adaptive, sequence-based immunity against viruses and plasmids and is specified by CRISPR RNAs (crRNAs) that are transcribed and processed from spacer-repeat units. Pre-crRNA processing is essential for CRISPR interference in all systems studied thus far. Here, our studies of crRNA biogenesis and CRISPR interference in naturally competent Neisseria spp. reveal a unique crRNA maturation pathway in which crRNAs are transcribed from promoters that are embedded within each repeat, yielding crRNA 5′ ends formed by transcription and not by processing. Although crRNA 3′ end formation involves RNase III and trans-encoded tracrRNA, as in other type II CRISPR systems, this processing is dispensable for interference. The meningococcal pathway is the most streamlined CRISPR/Cas system characterized to date. Endogenous CRISPR spacers limit natural transformation, which is the primary source of genetic variation that contributes to immune evasion, antibiotic resistance, and virulence in the human pathogen N. meningitidis. •Unlike previously described CRISPRs, each Neisseria repeat carries its own promoter•Pre-crRNA processing is dispensable for CRISPR interference in Neisseria spp.•CRISPR interference blocks natural transformation in the pathogen N. meningitidis•Neisseria CRISPR/Cas systems are the most streamlined observed to date</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23706818</pmid><doi>10.1016/j.molcel.2013.05.001</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2013-05, Vol.50 (4), p.488-503
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3694421
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects antibiotic resistance
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Base Sequence
biogenesis
Genes, Bacterial - genetics
genetic variation
Host-Pathogen Interactions
Humans
immune evasion
immunity
Inverted Repeat Sequences - genetics
Meningococcal Infections - microbiology
Models, Genetic
Neisseria
Neisseria meningitidis
Neisseria meningitidis - genetics
Neisseria meningitidis - pathogenicity
Neisseria meningitidis - physiology
pathogens
plasmids
Promoter Regions, Genetic - genetics
Ribonuclease III - metabolism
ribonucleases
RNA
RNA Processing, Post-Transcriptional
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
RNases
Sequence Homology, Nucleic Acid
Transcription, Genetic
Transformation, Bacterial
virulence
Virulence - genetics
viruses
title Processing-Independent CRISPR RNAs Limit Natural Transformation in Neisseria meningitidis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Processing-Independent%20CRISPR%20RNAs%20Limit%20Natural%20Transformation%20in%20Neisseria%20meningitidis&rft.jtitle=Molecular%20cell&rft.au=Zhang,%20Yan&rft.date=2013-05-23&rft.volume=50&rft.issue=4&rft.spage=488&rft.epage=503&rft.pages=488-503&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2013.05.001&rft_dat=%3Cproquest_pubme%3E1356390280%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1356390280&rft_id=info:pmid/23706818&rft_els_id=S109727651300364X&rfr_iscdi=true