Role of Leaky Neuronal Ryanodine Receptors in Stress- Induced Cognitive Dysfunction

The type 2 ryanodine receptor/calcium release channel (RyR2), required for excitation-contraction coupling in the heart, is abundant in the brain. Chronic stress induces catecholamine biosynthesis and release, stimulating β-adrenergic receptors and activating cAMP signaling pathways in neurons. In a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2012-08, Vol.150 (5), p.1055-1067
Hauptverfasser: Liu, Xiaoping, Betzenhauser, Matthew J., Reiken, Steve, Meli, Albano C., Xie, Wenjun, Chen, Bi-Xing, Arancio, Ottavio, Marks, Andrew R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1067
container_issue 5
container_start_page 1055
container_title Cell
container_volume 150
creator Liu, Xiaoping
Betzenhauser, Matthew J.
Reiken, Steve
Meli, Albano C.
Xie, Wenjun
Chen, Bi-Xing
Arancio, Ottavio
Marks, Andrew R.
description The type 2 ryanodine receptor/calcium release channel (RyR2), required for excitation-contraction coupling in the heart, is abundant in the brain. Chronic stress induces catecholamine biosynthesis and release, stimulating β-adrenergic receptors and activating cAMP signaling pathways in neurons. In a murine chronic restraint stress model, neuronal RyR2 were phosphorylated by protein kinase A (PKA), oxidized, and nitrosylated, resulting in depletion of the stabilizing subunit calstabin2 (FKBP12.6) from the channel complex and intracellular calcium leak. Stress-induced cognitive dysfunction, including deficits in learning and memory, and reduced long-term potentiation (LTP) at the hippocampal CA3-CA1 connection were rescued by oral administration of S107, a compound developed in our laboratory that stabilizes RyR2-calstabin2 interaction, or by genetic ablation of the RyR2 PKA phosphorylation site at serine 2808. Thus, neuronal RyR2 remodeling contributes to stress-induced cognitive dysfunction. Leaky RyR2 could be a therapeutic target for treatment of stress-induced cognitive dysfunction. [Display omitted] ► Leaky hippocampal RyR2 channels contribute to stress-induced cognitive dysfunction ► RyR2 PKA hyperphosphorylation and calstabin2 depletion cause intracellular Ca2+ leak ► Pharmacologic or genetic inhibition of Ca2+ leak prevent the cognitive dysfunction Stabilizing a leaky calcium release channel with a small molecule alleviates the detrimental effects of long-term stress on learning and memory.
doi_str_mv 10.1016/j.cell.2012.06.052
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3690518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867412009440</els_id><sourcerecordid>1037885105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-5af910a4bb5b27b39a3e0285f3956bc812b5381b57e9d7ac620882d2027507333</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhiMEYrsLL8ABfOSSMLbjxJYQEioLrFSB1LJny3EmxSW1u3ZSqW9Poi4ruLAnH_z9v2bmy7JXFAoKtHq3Kyz2fcGAsgKqAgR7ki0oqDovac2eZgsAxXJZ1eVFdpnSDgCkEOJ5dsGY4qpicpFt1qFHEjqyQvPrRL7hGIM3PVmfjA-t80jWaPEwhJiI82QzREwpJze-HS22ZBm23g3uiOTTKXWjt4ML_kX2rDN9wpf371V2-_n6x_Jrvvr-5Wb5cZVbUYohF6ZTFEzZNKJhdcOV4QhMio4rUTVWUtYILmkjalRtbWzFQErWMmC1gJpzfpV9OPcexmaPrUU_RNPrQ3R7E086GKf__fHup96Go-aVAkHlVPD2viCGuxHToPcuzTc1HsOYNJsuBqJkAh5FKWOUlqVU5eMo8FpKQUFMKDujNoaUInYPw1PQs2O903NSz441VHpyPIVe_732Q-SP1Al4cwY6E7TZRpf07WZqqOZ1qvPi788ETnqODqNO1qGfjLqIdtBtcP-b4DelPcAf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037885105</pqid></control><display><type>article</type><title>Role of Leaky Neuronal Ryanodine Receptors in Stress- Induced Cognitive Dysfunction</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Xiaoping ; Betzenhauser, Matthew J. ; Reiken, Steve ; Meli, Albano C. ; Xie, Wenjun ; Chen, Bi-Xing ; Arancio, Ottavio ; Marks, Andrew R.</creator><creatorcontrib>Liu, Xiaoping ; Betzenhauser, Matthew J. ; Reiken, Steve ; Meli, Albano C. ; Xie, Wenjun ; Chen, Bi-Xing ; Arancio, Ottavio ; Marks, Andrew R.</creatorcontrib><description>The type 2 ryanodine receptor/calcium release channel (RyR2), required for excitation-contraction coupling in the heart, is abundant in the brain. Chronic stress induces catecholamine biosynthesis and release, stimulating β-adrenergic receptors and activating cAMP signaling pathways in neurons. In a murine chronic restraint stress model, neuronal RyR2 were phosphorylated by protein kinase A (PKA), oxidized, and nitrosylated, resulting in depletion of the stabilizing subunit calstabin2 (FKBP12.6) from the channel complex and intracellular calcium leak. Stress-induced cognitive dysfunction, including deficits in learning and memory, and reduced long-term potentiation (LTP) at the hippocampal CA3-CA1 connection were rescued by oral administration of S107, a compound developed in our laboratory that stabilizes RyR2-calstabin2 interaction, or by genetic ablation of the RyR2 PKA phosphorylation site at serine 2808. Thus, neuronal RyR2 remodeling contributes to stress-induced cognitive dysfunction. Leaky RyR2 could be a therapeutic target for treatment of stress-induced cognitive dysfunction. [Display omitted] ► Leaky hippocampal RyR2 channels contribute to stress-induced cognitive dysfunction ► RyR2 PKA hyperphosphorylation and calstabin2 depletion cause intracellular Ca2+ leak ► Pharmacologic or genetic inhibition of Ca2+ leak prevent the cognitive dysfunction Stabilizing a leaky calcium release channel with a small molecule alleviates the detrimental effects of long-term stress on learning and memory.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2012.06.052</identifier><identifier>PMID: 22939628</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; biosynthesis ; brain ; calcium ; Calcium - metabolism ; cAMP-dependent protein kinase ; cognition ; Cognition Disorders - metabolism ; cyclic AMP ; dysfunction ; heart ; Hippocampus - metabolism ; Male ; memory ; Mice ; Mice, Inbred C57BL ; neurons ; oral administration ; phosphorylation ; Ryanodine Receptor Calcium Release Channel - metabolism ; ryanodine receptors ; serine ; signal transduction ; Stress Disorders, Traumatic - metabolism</subject><ispartof>Cell, 2012-08, Vol.150 (5), p.1055-1067</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-5af910a4bb5b27b39a3e0285f3956bc812b5381b57e9d7ac620882d2027507333</citedby><cites>FETCH-LOGICAL-c545t-5af910a4bb5b27b39a3e0285f3956bc812b5381b57e9d7ac620882d2027507333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867412009440$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22939628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiaoping</creatorcontrib><creatorcontrib>Betzenhauser, Matthew J.</creatorcontrib><creatorcontrib>Reiken, Steve</creatorcontrib><creatorcontrib>Meli, Albano C.</creatorcontrib><creatorcontrib>Xie, Wenjun</creatorcontrib><creatorcontrib>Chen, Bi-Xing</creatorcontrib><creatorcontrib>Arancio, Ottavio</creatorcontrib><creatorcontrib>Marks, Andrew R.</creatorcontrib><title>Role of Leaky Neuronal Ryanodine Receptors in Stress- Induced Cognitive Dysfunction</title><title>Cell</title><addtitle>Cell</addtitle><description>The type 2 ryanodine receptor/calcium release channel (RyR2), required for excitation-contraction coupling in the heart, is abundant in the brain. Chronic stress induces catecholamine biosynthesis and release, stimulating β-adrenergic receptors and activating cAMP signaling pathways in neurons. In a murine chronic restraint stress model, neuronal RyR2 were phosphorylated by protein kinase A (PKA), oxidized, and nitrosylated, resulting in depletion of the stabilizing subunit calstabin2 (FKBP12.6) from the channel complex and intracellular calcium leak. Stress-induced cognitive dysfunction, including deficits in learning and memory, and reduced long-term potentiation (LTP) at the hippocampal CA3-CA1 connection were rescued by oral administration of S107, a compound developed in our laboratory that stabilizes RyR2-calstabin2 interaction, or by genetic ablation of the RyR2 PKA phosphorylation site at serine 2808. Thus, neuronal RyR2 remodeling contributes to stress-induced cognitive dysfunction. Leaky RyR2 could be a therapeutic target for treatment of stress-induced cognitive dysfunction. [Display omitted] ► Leaky hippocampal RyR2 channels contribute to stress-induced cognitive dysfunction ► RyR2 PKA hyperphosphorylation and calstabin2 depletion cause intracellular Ca2+ leak ► Pharmacologic or genetic inhibition of Ca2+ leak prevent the cognitive dysfunction Stabilizing a leaky calcium release channel with a small molecule alleviates the detrimental effects of long-term stress on learning and memory.</description><subject>Animals</subject><subject>biosynthesis</subject><subject>brain</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>cAMP-dependent protein kinase</subject><subject>cognition</subject><subject>Cognition Disorders - metabolism</subject><subject>cyclic AMP</subject><subject>dysfunction</subject><subject>heart</subject><subject>Hippocampus - metabolism</subject><subject>Male</subject><subject>memory</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>neurons</subject><subject>oral administration</subject><subject>phosphorylation</subject><subject>Ryanodine Receptor Calcium Release Channel - metabolism</subject><subject>ryanodine receptors</subject><subject>serine</subject><subject>signal transduction</subject><subject>Stress Disorders, Traumatic - metabolism</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcGO0zAQhiMEYrsLL8ABfOSSMLbjxJYQEioLrFSB1LJny3EmxSW1u3ZSqW9Poi4ruLAnH_z9v2bmy7JXFAoKtHq3Kyz2fcGAsgKqAgR7ki0oqDovac2eZgsAxXJZ1eVFdpnSDgCkEOJ5dsGY4qpicpFt1qFHEjqyQvPrRL7hGIM3PVmfjA-t80jWaPEwhJiI82QzREwpJze-HS22ZBm23g3uiOTTKXWjt4ML_kX2rDN9wpf371V2-_n6x_Jrvvr-5Wb5cZVbUYohF6ZTFEzZNKJhdcOV4QhMio4rUTVWUtYILmkjalRtbWzFQErWMmC1gJpzfpV9OPcexmaPrUU_RNPrQ3R7E086GKf__fHup96Go-aVAkHlVPD2viCGuxHToPcuzTc1HsOYNJsuBqJkAh5FKWOUlqVU5eMo8FpKQUFMKDujNoaUInYPw1PQs2O903NSz441VHpyPIVe_732Q-SP1Al4cwY6E7TZRpf07WZqqOZ1qvPi788ETnqODqNO1qGfjLqIdtBtcP-b4DelPcAf</recordid><startdate>20120831</startdate><enddate>20120831</enddate><creator>Liu, Xiaoping</creator><creator>Betzenhauser, Matthew J.</creator><creator>Reiken, Steve</creator><creator>Meli, Albano C.</creator><creator>Xie, Wenjun</creator><creator>Chen, Bi-Xing</creator><creator>Arancio, Ottavio</creator><creator>Marks, Andrew R.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QP</scope><scope>7TK</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120831</creationdate><title>Role of Leaky Neuronal Ryanodine Receptors in Stress- Induced Cognitive Dysfunction</title><author>Liu, Xiaoping ; Betzenhauser, Matthew J. ; Reiken, Steve ; Meli, Albano C. ; Xie, Wenjun ; Chen, Bi-Xing ; Arancio, Ottavio ; Marks, Andrew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-5af910a4bb5b27b39a3e0285f3956bc812b5381b57e9d7ac620882d2027507333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>biosynthesis</topic><topic>brain</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>cAMP-dependent protein kinase</topic><topic>cognition</topic><topic>Cognition Disorders - metabolism</topic><topic>cyclic AMP</topic><topic>dysfunction</topic><topic>heart</topic><topic>Hippocampus - metabolism</topic><topic>Male</topic><topic>memory</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>neurons</topic><topic>oral administration</topic><topic>phosphorylation</topic><topic>Ryanodine Receptor Calcium Release Channel - metabolism</topic><topic>ryanodine receptors</topic><topic>serine</topic><topic>signal transduction</topic><topic>Stress Disorders, Traumatic - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaoping</creatorcontrib><creatorcontrib>Betzenhauser, Matthew J.</creatorcontrib><creatorcontrib>Reiken, Steve</creatorcontrib><creatorcontrib>Meli, Albano C.</creatorcontrib><creatorcontrib>Xie, Wenjun</creatorcontrib><creatorcontrib>Chen, Bi-Xing</creatorcontrib><creatorcontrib>Arancio, Ottavio</creatorcontrib><creatorcontrib>Marks, Andrew R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaoping</au><au>Betzenhauser, Matthew J.</au><au>Reiken, Steve</au><au>Meli, Albano C.</au><au>Xie, Wenjun</au><au>Chen, Bi-Xing</au><au>Arancio, Ottavio</au><au>Marks, Andrew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Leaky Neuronal Ryanodine Receptors in Stress- Induced Cognitive Dysfunction</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2012-08-31</date><risdate>2012</risdate><volume>150</volume><issue>5</issue><spage>1055</spage><epage>1067</epage><pages>1055-1067</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>The type 2 ryanodine receptor/calcium release channel (RyR2), required for excitation-contraction coupling in the heart, is abundant in the brain. Chronic stress induces catecholamine biosynthesis and release, stimulating β-adrenergic receptors and activating cAMP signaling pathways in neurons. In a murine chronic restraint stress model, neuronal RyR2 were phosphorylated by protein kinase A (PKA), oxidized, and nitrosylated, resulting in depletion of the stabilizing subunit calstabin2 (FKBP12.6) from the channel complex and intracellular calcium leak. Stress-induced cognitive dysfunction, including deficits in learning and memory, and reduced long-term potentiation (LTP) at the hippocampal CA3-CA1 connection were rescued by oral administration of S107, a compound developed in our laboratory that stabilizes RyR2-calstabin2 interaction, or by genetic ablation of the RyR2 PKA phosphorylation site at serine 2808. Thus, neuronal RyR2 remodeling contributes to stress-induced cognitive dysfunction. Leaky RyR2 could be a therapeutic target for treatment of stress-induced cognitive dysfunction. [Display omitted] ► Leaky hippocampal RyR2 channels contribute to stress-induced cognitive dysfunction ► RyR2 PKA hyperphosphorylation and calstabin2 depletion cause intracellular Ca2+ leak ► Pharmacologic or genetic inhibition of Ca2+ leak prevent the cognitive dysfunction Stabilizing a leaky calcium release channel with a small molecule alleviates the detrimental effects of long-term stress on learning and memory.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22939628</pmid><doi>10.1016/j.cell.2012.06.052</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2012-08, Vol.150 (5), p.1055-1067
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3690518
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
biosynthesis
brain
calcium
Calcium - metabolism
cAMP-dependent protein kinase
cognition
Cognition Disorders - metabolism
cyclic AMP
dysfunction
heart
Hippocampus - metabolism
Male
memory
Mice
Mice, Inbred C57BL
neurons
oral administration
phosphorylation
Ryanodine Receptor Calcium Release Channel - metabolism
ryanodine receptors
serine
signal transduction
Stress Disorders, Traumatic - metabolism
title Role of Leaky Neuronal Ryanodine Receptors in Stress- Induced Cognitive Dysfunction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Leaky%20Neuronal%20Ryanodine%20Receptors%20in%20Stress-%20Induced%20Cognitive%20Dysfunction&rft.jtitle=Cell&rft.au=Liu,%20Xiaoping&rft.date=2012-08-31&rft.volume=150&rft.issue=5&rft.spage=1055&rft.epage=1067&rft.pages=1055-1067&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2012.06.052&rft_dat=%3Cproquest_pubme%3E1037885105%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037885105&rft_id=info:pmid/22939628&rft_els_id=S0092867412009440&rfr_iscdi=true