Unusual Fragmentation Pathways in Collagen Glycopeptides
Collagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids –(X—Y—Gly) n . Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in col...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Mass Spectrometry 2013-07, Vol.24 (7), p.1072-1081 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1081 |
---|---|
container_issue | 7 |
container_start_page | 1072 |
container_title | Journal of the American Society for Mass Spectrometry |
container_volume | 24 |
creator | Perdivara, Irina Perera, Lalith Sricholpech, Marnisa Terajima, Masahiko Pleshko, Nancy Yamauchi, Mitsuo Tomer, Kenneth B. |
description | Collagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids –(X—Y—Gly)
n
. Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in collagen occurs at the 5-OH group in HyK in the form of two glycosides, galactosylhydroxylysine (Gal-HyK) and glucosyl galactosylhydroxylysine (GlcGal-HyK). In collision induced dissociation (CID), collagen tryptic glycopeptides exhibit unexpected gas-phase dissociation behavior compared to typical
N
- and
O
-linked glycopeptides (i.e., in addition to glycosidic bond cleavages, extensive cleavages of the amide bonds are observed). The Gal- or GlcGal- glycan modifications are largely retained on the fragment ions. These features enable unambiguous determination of the amino acid sequence of collagen glycopeptides and the location of the glycosylation site. This dissociation pattern was consistent for all analyzed collagen glycopeptides, regardless of their length or amino acid composition, collagen type or tissue. The two fragmentation pathways—amide bond and glycosidic bond cleavage—are highly competitive in collagen tryptic glycopeptides. The number of ionizing protons relative to the number of basic sites (i.e., Arg, Lys, HyK, and N-terminus) is a major driving force of the fragmentation. We present here our experimental results and employ quantum mechanics calculations to understand the factors enhancing the labile character of the amide bonds and the stability of hydroxylysine glycosides in gas phase dissociation of collagen glycopeptides.
Figure
ᅟ |
doi_str_mv | 10.1007/s13361-013-0624-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3679267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1950993939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-222d888d1158f651174974611963335ecff177158ca3a44309d0e4996b82509c3</originalsourceid><addsrcrecordid>eNp1UE1LwzAYDqK4Of0BXqTgOZo3SZPmIshwUxjowZ1D1qZdR9fOpFX6783oHHqQHN7A88mD0DWQOyBE3ntgTAAmwDARlOP-BI0hkQoDUHYa_oRzTBiJR-jC-w0hIImS52hEmWAsyMYoWdad70wVzZwptrZuTVs2dfRm2vWX6X1U1tG0qSpT2DqaV33a7OyuLTPrL9FZbipvrw53gpazp_fpM168zl-mjwuccklaTCnNkiTJAOIkFzGA5EpyAaBCAxbbNM9BygCmhhnOGVEZsVwpsUpoTFTKJuhh8N11q63N0lDRmUrvXLk1rteNKfVfpC7Xumg-NRNSUSGDwe3BwDUfnfWt3jSdq0NnDSpEKLZ_EwQDK3WN987mxwQgej-2HsbWYTW9H1v3QXPzu9pR8bNuINCB4ANUF9b9iv7X9RtYGYl1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950993939</pqid></control><display><type>article</type><title>Unusual Fragmentation Pathways in Collagen Glycopeptides</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Perdivara, Irina ; Perera, Lalith ; Sricholpech, Marnisa ; Terajima, Masahiko ; Pleshko, Nancy ; Yamauchi, Mitsuo ; Tomer, Kenneth B.</creator><creatorcontrib>Perdivara, Irina ; Perera, Lalith ; Sricholpech, Marnisa ; Terajima, Masahiko ; Pleshko, Nancy ; Yamauchi, Mitsuo ; Tomer, Kenneth B.</creatorcontrib><description>Collagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids –(X—Y—Gly)
n
. Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in collagen occurs at the 5-OH group in HyK in the form of two glycosides, galactosylhydroxylysine (Gal-HyK) and glucosyl galactosylhydroxylysine (GlcGal-HyK). In collision induced dissociation (CID), collagen tryptic glycopeptides exhibit unexpected gas-phase dissociation behavior compared to typical
N
- and
O
-linked glycopeptides (i.e., in addition to glycosidic bond cleavages, extensive cleavages of the amide bonds are observed). The Gal- or GlcGal- glycan modifications are largely retained on the fragment ions. These features enable unambiguous determination of the amino acid sequence of collagen glycopeptides and the location of the glycosylation site. This dissociation pattern was consistent for all analyzed collagen glycopeptides, regardless of their length or amino acid composition, collagen type or tissue. The two fragmentation pathways—amide bond and glycosidic bond cleavage—are highly competitive in collagen tryptic glycopeptides. The number of ionizing protons relative to the number of basic sites (i.e., Arg, Lys, HyK, and N-terminus) is a major driving force of the fragmentation. We present here our experimental results and employ quantum mechanics calculations to understand the factors enhancing the labile character of the amide bonds and the stability of hydroxylysine glycosides in gas phase dissociation of collagen glycopeptides.
Figure
ᅟ</description><identifier>ISSN: 1044-0305</identifier><identifier>EISSN: 1879-1123</identifier><identifier>DOI: 10.1007/s13361-013-0624-y</identifier><identifier>PMID: 23633013</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Amino Acid Sequence ; Amino acids ; Analytical Chemistry ; Animals ; Antibiotics ; Binding Sites ; Bioinformatics ; Biotechnology ; Cattle ; Chemistry ; Chemistry and Materials Science ; Chromatography, High Pressure Liquid - methods ; Collagen ; Collagen - chemistry ; Collagen - genetics ; Collision dynamics ; Fragmentation ; Glycan ; Glycopeptides ; Glycopeptides - chemistry ; Glycopeptides - genetics ; Glycosylation ; Hydroxylysine - analogs & derivatives ; Hydroxylysine - chemistry ; Mass spectrometry ; Molecular Sequence Data ; Molecular Structure ; Organic Chemistry ; Peptide Fragments - chemistry ; Peptide Fragments - genetics ; Proteomics ; Quantum mechanics ; Quantum Theory ; Research Article ; Spectrometry, Mass, Electrospray Ionization - methods ; Tandem Mass Spectrometry - methods ; Trypsin</subject><ispartof>Journal of the American Society for Mass Spectrometry, 2013-07, Vol.24 (7), p.1072-1081</ispartof><rights>American Society for Mass Spectrometry (outside the USA) 2013</rights><rights>Journal of The American Society for Mass Spectrometry is a copyright of Springer, 2013.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-222d888d1158f651174974611963335ecff177158ca3a44309d0e4996b82509c3</citedby><cites>FETCH-LOGICAL-c470t-222d888d1158f651174974611963335ecff177158ca3a44309d0e4996b82509c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13361-013-0624-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13361-013-0624-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23633013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perdivara, Irina</creatorcontrib><creatorcontrib>Perera, Lalith</creatorcontrib><creatorcontrib>Sricholpech, Marnisa</creatorcontrib><creatorcontrib>Terajima, Masahiko</creatorcontrib><creatorcontrib>Pleshko, Nancy</creatorcontrib><creatorcontrib>Yamauchi, Mitsuo</creatorcontrib><creatorcontrib>Tomer, Kenneth B.</creatorcontrib><title>Unusual Fragmentation Pathways in Collagen Glycopeptides</title><title>Journal of the American Society for Mass Spectrometry</title><addtitle>J. Am. Soc. Mass Spectrom</addtitle><addtitle>J Am Soc Mass Spectrom</addtitle><description>Collagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids –(X—Y—Gly)
n
. Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in collagen occurs at the 5-OH group in HyK in the form of two glycosides, galactosylhydroxylysine (Gal-HyK) and glucosyl galactosylhydroxylysine (GlcGal-HyK). In collision induced dissociation (CID), collagen tryptic glycopeptides exhibit unexpected gas-phase dissociation behavior compared to typical
N
- and
O
-linked glycopeptides (i.e., in addition to glycosidic bond cleavages, extensive cleavages of the amide bonds are observed). The Gal- or GlcGal- glycan modifications are largely retained on the fragment ions. These features enable unambiguous determination of the amino acid sequence of collagen glycopeptides and the location of the glycosylation site. This dissociation pattern was consistent for all analyzed collagen glycopeptides, regardless of their length or amino acid composition, collagen type or tissue. The two fragmentation pathways—amide bond and glycosidic bond cleavage—are highly competitive in collagen tryptic glycopeptides. The number of ionizing protons relative to the number of basic sites (i.e., Arg, Lys, HyK, and N-terminus) is a major driving force of the fragmentation. We present here our experimental results and employ quantum mechanics calculations to understand the factors enhancing the labile character of the amide bonds and the stability of hydroxylysine glycosides in gas phase dissociation of collagen glycopeptides.
Figure
ᅟ</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Binding Sites</subject><subject>Bioinformatics</subject><subject>Biotechnology</subject><subject>Cattle</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Collagen</subject><subject>Collagen - chemistry</subject><subject>Collagen - genetics</subject><subject>Collision dynamics</subject><subject>Fragmentation</subject><subject>Glycan</subject><subject>Glycopeptides</subject><subject>Glycopeptides - chemistry</subject><subject>Glycopeptides - genetics</subject><subject>Glycosylation</subject><subject>Hydroxylysine - analogs & derivatives</subject><subject>Hydroxylysine - chemistry</subject><subject>Mass spectrometry</subject><subject>Molecular Sequence Data</subject><subject>Molecular Structure</subject><subject>Organic Chemistry</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - genetics</subject><subject>Proteomics</subject><subject>Quantum mechanics</subject><subject>Quantum Theory</subject><subject>Research Article</subject><subject>Spectrometry, Mass, Electrospray Ionization - methods</subject><subject>Tandem Mass Spectrometry - methods</subject><subject>Trypsin</subject><issn>1044-0305</issn><issn>1879-1123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UE1LwzAYDqK4Of0BXqTgOZo3SZPmIshwUxjowZ1D1qZdR9fOpFX6783oHHqQHN7A88mD0DWQOyBE3ntgTAAmwDARlOP-BI0hkQoDUHYa_oRzTBiJR-jC-w0hIImS52hEmWAsyMYoWdad70wVzZwptrZuTVs2dfRm2vWX6X1U1tG0qSpT2DqaV33a7OyuLTPrL9FZbipvrw53gpazp_fpM168zl-mjwuccklaTCnNkiTJAOIkFzGA5EpyAaBCAxbbNM9BygCmhhnOGVEZsVwpsUpoTFTKJuhh8N11q63N0lDRmUrvXLk1rteNKfVfpC7Xumg-NRNSUSGDwe3BwDUfnfWt3jSdq0NnDSpEKLZ_EwQDK3WN987mxwQgej-2HsbWYTW9H1v3QXPzu9pR8bNuINCB4ANUF9b9iv7X9RtYGYl1</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Perdivara, Irina</creator><creator>Perera, Lalith</creator><creator>Sricholpech, Marnisa</creator><creator>Terajima, Masahiko</creator><creator>Pleshko, Nancy</creator><creator>Yamauchi, Mitsuo</creator><creator>Tomer, Kenneth B.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20130701</creationdate><title>Unusual Fragmentation Pathways in Collagen Glycopeptides</title><author>Perdivara, Irina ; Perera, Lalith ; Sricholpech, Marnisa ; Terajima, Masahiko ; Pleshko, Nancy ; Yamauchi, Mitsuo ; Tomer, Kenneth B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-222d888d1158f651174974611963335ecff177158ca3a44309d0e4996b82509c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Binding Sites</topic><topic>Bioinformatics</topic><topic>Biotechnology</topic><topic>Cattle</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Collagen</topic><topic>Collagen - chemistry</topic><topic>Collagen - genetics</topic><topic>Collision dynamics</topic><topic>Fragmentation</topic><topic>Glycan</topic><topic>Glycopeptides</topic><topic>Glycopeptides - chemistry</topic><topic>Glycopeptides - genetics</topic><topic>Glycosylation</topic><topic>Hydroxylysine - analogs & derivatives</topic><topic>Hydroxylysine - chemistry</topic><topic>Mass spectrometry</topic><topic>Molecular Sequence Data</topic><topic>Molecular Structure</topic><topic>Organic Chemistry</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - genetics</topic><topic>Proteomics</topic><topic>Quantum mechanics</topic><topic>Quantum Theory</topic><topic>Research Article</topic><topic>Spectrometry, Mass, Electrospray Ionization - methods</topic><topic>Tandem Mass Spectrometry - methods</topic><topic>Trypsin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perdivara, Irina</creatorcontrib><creatorcontrib>Perera, Lalith</creatorcontrib><creatorcontrib>Sricholpech, Marnisa</creatorcontrib><creatorcontrib>Terajima, Masahiko</creatorcontrib><creatorcontrib>Pleshko, Nancy</creatorcontrib><creatorcontrib>Yamauchi, Mitsuo</creatorcontrib><creatorcontrib>Tomer, Kenneth B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Society for Mass Spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perdivara, Irina</au><au>Perera, Lalith</au><au>Sricholpech, Marnisa</au><au>Terajima, Masahiko</au><au>Pleshko, Nancy</au><au>Yamauchi, Mitsuo</au><au>Tomer, Kenneth B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unusual Fragmentation Pathways in Collagen Glycopeptides</atitle><jtitle>Journal of the American Society for Mass Spectrometry</jtitle><stitle>J. Am. Soc. Mass Spectrom</stitle><addtitle>J Am Soc Mass Spectrom</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>24</volume><issue>7</issue><spage>1072</spage><epage>1081</epage><pages>1072-1081</pages><issn>1044-0305</issn><eissn>1879-1123</eissn><abstract>Collagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids –(X—Y—Gly)
n
. Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in collagen occurs at the 5-OH group in HyK in the form of two glycosides, galactosylhydroxylysine (Gal-HyK) and glucosyl galactosylhydroxylysine (GlcGal-HyK). In collision induced dissociation (CID), collagen tryptic glycopeptides exhibit unexpected gas-phase dissociation behavior compared to typical
N
- and
O
-linked glycopeptides (i.e., in addition to glycosidic bond cleavages, extensive cleavages of the amide bonds are observed). The Gal- or GlcGal- glycan modifications are largely retained on the fragment ions. These features enable unambiguous determination of the amino acid sequence of collagen glycopeptides and the location of the glycosylation site. This dissociation pattern was consistent for all analyzed collagen glycopeptides, regardless of their length or amino acid composition, collagen type or tissue. The two fragmentation pathways—amide bond and glycosidic bond cleavage—are highly competitive in collagen tryptic glycopeptides. The number of ionizing protons relative to the number of basic sites (i.e., Arg, Lys, HyK, and N-terminus) is a major driving force of the fragmentation. We present here our experimental results and employ quantum mechanics calculations to understand the factors enhancing the labile character of the amide bonds and the stability of hydroxylysine glycosides in gas phase dissociation of collagen glycopeptides.
Figure
ᅟ</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>23633013</pmid><doi>10.1007/s13361-013-0624-y</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-0305 |
ispartof | Journal of the American Society for Mass Spectrometry, 2013-07, Vol.24 (7), p.1072-1081 |
issn | 1044-0305 1879-1123 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3679267 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Amino Acid Sequence Amino acids Analytical Chemistry Animals Antibiotics Binding Sites Bioinformatics Biotechnology Cattle Chemistry Chemistry and Materials Science Chromatography, High Pressure Liquid - methods Collagen Collagen - chemistry Collagen - genetics Collision dynamics Fragmentation Glycan Glycopeptides Glycopeptides - chemistry Glycopeptides - genetics Glycosylation Hydroxylysine - analogs & derivatives Hydroxylysine - chemistry Mass spectrometry Molecular Sequence Data Molecular Structure Organic Chemistry Peptide Fragments - chemistry Peptide Fragments - genetics Proteomics Quantum mechanics Quantum Theory Research Article Spectrometry, Mass, Electrospray Ionization - methods Tandem Mass Spectrometry - methods Trypsin |
title | Unusual Fragmentation Pathways in Collagen Glycopeptides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unusual%20Fragmentation%20Pathways%20in%20Collagen%20Glycopeptides&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Mass%20Spectrometry&rft.au=Perdivara,%20Irina&rft.date=2013-07-01&rft.volume=24&rft.issue=7&rft.spage=1072&rft.epage=1081&rft.pages=1072-1081&rft.issn=1044-0305&rft.eissn=1879-1123&rft_id=info:doi/10.1007/s13361-013-0624-y&rft_dat=%3Cproquest_pubme%3E1950993939%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950993939&rft_id=info:pmid/23633013&rfr_iscdi=true |