Emx1-Lineage Progenitors Differentially Contribute to Neural Diversity in the Striatum and Amygdala
In the developing mammalian basal telencephalon, neural progenitors from the subpallium generate the majority of inhibitory medium spiny neurons (MSNs) in the striatum, while both pallial- and subpallial-derived progenitors contribute to excitatory and inhibitory neuronal diversity in the amygdala....
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2009-12, Vol.29 (50), p.15933-15946 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15946 |
---|---|
container_issue | 50 |
container_start_page | 15933 |
container_title | The Journal of neuroscience |
container_volume | 29 |
creator | Cocas, Laura A Miyoshi, Goichi Carney, Rosalind S. E Sousa, Vitor H Hirata, Tsutomu Jones, Kevin R Fishell, Gord Huntsman, Molly M Corbin, Joshua G |
description | In the developing mammalian basal telencephalon, neural progenitors from the subpallium generate the majority of inhibitory medium spiny neurons (MSNs) in the striatum, while both pallial- and subpallial-derived progenitors contribute to excitatory and inhibitory neuronal diversity in the amygdala. Using a combination of approaches, including genetic fate mapping, cell birth dating, cell migration assays, and electrophysiology, we find that cells derived from the Emx1 lineage contribute to two distinct neuronal populations in the mature basal forebrain: inhibitory MSNs in the striatum and functionally distinct subclasses of excitatory neurons in the amygdala. Our cell birth-dating studies reveal that these two populations are born at different times during early neurogenesis, with the amygdala population born before the MSNs. In the striatum, Emx1-lineage neurons represent a unique subpopulation of MSNs: they are disproportionately localized to the dorsal striatum, are found in dopamine receiving, reelin-positive patches, and are born throughout striatal neurogenesis. In addition, our data suggest that a subpopulation of these Emx1-lineage cells originate in the pallium and subsequently migrate to the developing striatum and amygdala. Our intersectional fate-mapping analysis further reveals that Emx1-lineage cells that coexpress Dlx exclusively generate MSNs but do not contribute to the excitatory neurons in the amygdala. Thus, both the timing of neurogenesis and differential combinatorial gene expression appear to be key determinants of striatal versus amygdala fate decisions of Emx1-lineage cells. |
doi_str_mv | 10.1523/JNEUROSCI.2525-09.2009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3679174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734199677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-ad397e35171b6b9bf1065dcb5c1544117e22e3b52fa7d7fcc8c0f91a4ea575c03</originalsourceid><addsrcrecordid>eNpVkU1vEzEQhi0EoqHwFyrf4LLBY6_X-IJUpQGKohZRera83tmN0X4U29uQf4-jlAhOc5hn3nmlh5ALYEuQXLz_erO-_357t7pecsllwfSSM6afkUXe6oKXDJ6TBeOKFVWpyjPyKsafjDHFQL0kZ5mFCpheELcefkOx8SPaDum3MHU4-jSFSK9822LAMXnb93u6msYUfD0npGmiNzgH22fmEUP0aU_9SNMW6V1mbJoHaseGXg77rrG9fU1etLaP-OZpnpP7T-sfqy_F5vbz9epyUzgJPBW2EVqhkKCgrmpdt8Aq2bhaOpBlCaCQcxS15K1VjWqd--BYq8GWaKWSjolz8vGY-zDXAzYud88lzUPwgw17M1lv_t-Mfmu66dGISmlQZQ54-xQQpl8zxmQGHx32vR1xmqNRogStK6UyWR1JF6YYA7anL8DMQZA5CTIHQYZpcxCUDy_-7Xg6-2skA--OwNZ3250PaOKQBWQczG6349rIwwcthPgDZaydbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734199677</pqid></control><display><type>article</type><title>Emx1-Lineage Progenitors Differentially Contribute to Neural Diversity in the Striatum and Amygdala</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Cocas, Laura A ; Miyoshi, Goichi ; Carney, Rosalind S. E ; Sousa, Vitor H ; Hirata, Tsutomu ; Jones, Kevin R ; Fishell, Gord ; Huntsman, Molly M ; Corbin, Joshua G</creator><creatorcontrib>Cocas, Laura A ; Miyoshi, Goichi ; Carney, Rosalind S. E ; Sousa, Vitor H ; Hirata, Tsutomu ; Jones, Kevin R ; Fishell, Gord ; Huntsman, Molly M ; Corbin, Joshua G</creatorcontrib><description>In the developing mammalian basal telencephalon, neural progenitors from the subpallium generate the majority of inhibitory medium spiny neurons (MSNs) in the striatum, while both pallial- and subpallial-derived progenitors contribute to excitatory and inhibitory neuronal diversity in the amygdala. Using a combination of approaches, including genetic fate mapping, cell birth dating, cell migration assays, and electrophysiology, we find that cells derived from the Emx1 lineage contribute to two distinct neuronal populations in the mature basal forebrain: inhibitory MSNs in the striatum and functionally distinct subclasses of excitatory neurons in the amygdala. Our cell birth-dating studies reveal that these two populations are born at different times during early neurogenesis, with the amygdala population born before the MSNs. In the striatum, Emx1-lineage neurons represent a unique subpopulation of MSNs: they are disproportionately localized to the dorsal striatum, are found in dopamine receiving, reelin-positive patches, and are born throughout striatal neurogenesis. In addition, our data suggest that a subpopulation of these Emx1-lineage cells originate in the pallium and subsequently migrate to the developing striatum and amygdala. Our intersectional fate-mapping analysis further reveals that Emx1-lineage cells that coexpress Dlx exclusively generate MSNs but do not contribute to the excitatory neurons in the amygdala. Thus, both the timing of neurogenesis and differential combinatorial gene expression appear to be key determinants of striatal versus amygdala fate decisions of Emx1-lineage cells.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2525-09.2009</identifier><identifier>PMID: 20016109</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Amygdala - cytology ; Amygdala - embryology ; Amygdala - physiology ; Animals ; Cell Differentiation - genetics ; Cell Differentiation - physiology ; Cell Lineage - genetics ; Cell Lineage - physiology ; Corpus Striatum - cytology ; Corpus Striatum - embryology ; Corpus Striatum - physiology ; Female ; Homeodomain Proteins - biosynthesis ; Homeodomain Proteins - genetics ; Homeodomain Proteins - physiology ; Mice ; Mice, Inbred C57BL ; Neurogenesis - genetics ; Neurogenesis - physiology ; Neurons - classification ; Neurons - cytology ; Neurons - physiology ; Pregnancy ; Stem Cells - classification ; Stem Cells - cytology ; Stem Cells - physiology ; Transcription Factors - biosynthesis ; Transcription Factors - genetics ; Transcription Factors - physiology</subject><ispartof>The Journal of neuroscience, 2009-12, Vol.29 (50), p.15933-15946</ispartof><rights>Copyright © 2009 Society for Neuroscience 0270-6474/09/2915933-14$15.00/0 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-ad397e35171b6b9bf1065dcb5c1544117e22e3b52fa7d7fcc8c0f91a4ea575c03</citedby><cites>FETCH-LOGICAL-c512t-ad397e35171b6b9bf1065dcb5c1544117e22e3b52fa7d7fcc8c0f91a4ea575c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679174/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679174/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20016109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cocas, Laura A</creatorcontrib><creatorcontrib>Miyoshi, Goichi</creatorcontrib><creatorcontrib>Carney, Rosalind S. E</creatorcontrib><creatorcontrib>Sousa, Vitor H</creatorcontrib><creatorcontrib>Hirata, Tsutomu</creatorcontrib><creatorcontrib>Jones, Kevin R</creatorcontrib><creatorcontrib>Fishell, Gord</creatorcontrib><creatorcontrib>Huntsman, Molly M</creatorcontrib><creatorcontrib>Corbin, Joshua G</creatorcontrib><title>Emx1-Lineage Progenitors Differentially Contribute to Neural Diversity in the Striatum and Amygdala</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>In the developing mammalian basal telencephalon, neural progenitors from the subpallium generate the majority of inhibitory medium spiny neurons (MSNs) in the striatum, while both pallial- and subpallial-derived progenitors contribute to excitatory and inhibitory neuronal diversity in the amygdala. Using a combination of approaches, including genetic fate mapping, cell birth dating, cell migration assays, and electrophysiology, we find that cells derived from the Emx1 lineage contribute to two distinct neuronal populations in the mature basal forebrain: inhibitory MSNs in the striatum and functionally distinct subclasses of excitatory neurons in the amygdala. Our cell birth-dating studies reveal that these two populations are born at different times during early neurogenesis, with the amygdala population born before the MSNs. In the striatum, Emx1-lineage neurons represent a unique subpopulation of MSNs: they are disproportionately localized to the dorsal striatum, are found in dopamine receiving, reelin-positive patches, and are born throughout striatal neurogenesis. In addition, our data suggest that a subpopulation of these Emx1-lineage cells originate in the pallium and subsequently migrate to the developing striatum and amygdala. Our intersectional fate-mapping analysis further reveals that Emx1-lineage cells that coexpress Dlx exclusively generate MSNs but do not contribute to the excitatory neurons in the amygdala. Thus, both the timing of neurogenesis and differential combinatorial gene expression appear to be key determinants of striatal versus amygdala fate decisions of Emx1-lineage cells.</description><subject>Amygdala - cytology</subject><subject>Amygdala - embryology</subject><subject>Amygdala - physiology</subject><subject>Animals</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Lineage - genetics</subject><subject>Cell Lineage - physiology</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - embryology</subject><subject>Corpus Striatum - physiology</subject><subject>Female</subject><subject>Homeodomain Proteins - biosynthesis</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neurogenesis - genetics</subject><subject>Neurogenesis - physiology</subject><subject>Neurons - classification</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Pregnancy</subject><subject>Stem Cells - classification</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - physiology</subject><subject>Transcription Factors - biosynthesis</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1vEzEQhi0EoqHwFyrf4LLBY6_X-IJUpQGKohZRera83tmN0X4U29uQf4-jlAhOc5hn3nmlh5ALYEuQXLz_erO-_357t7pecsllwfSSM6afkUXe6oKXDJ6TBeOKFVWpyjPyKsafjDHFQL0kZ5mFCpheELcefkOx8SPaDum3MHU4-jSFSK9822LAMXnb93u6msYUfD0npGmiNzgH22fmEUP0aU_9SNMW6V1mbJoHaseGXg77rrG9fU1etLaP-OZpnpP7T-sfqy_F5vbz9epyUzgJPBW2EVqhkKCgrmpdt8Aq2bhaOpBlCaCQcxS15K1VjWqd--BYq8GWaKWSjolz8vGY-zDXAzYud88lzUPwgw17M1lv_t-Mfmu66dGISmlQZQ54-xQQpl8zxmQGHx32vR1xmqNRogStK6UyWR1JF6YYA7anL8DMQZA5CTIHQYZpcxCUDy_-7Xg6-2skA--OwNZ3250PaOKQBWQczG6349rIwwcthPgDZaydbw</recordid><startdate>20091216</startdate><enddate>20091216</enddate><creator>Cocas, Laura A</creator><creator>Miyoshi, Goichi</creator><creator>Carney, Rosalind S. E</creator><creator>Sousa, Vitor H</creator><creator>Hirata, Tsutomu</creator><creator>Jones, Kevin R</creator><creator>Fishell, Gord</creator><creator>Huntsman, Molly M</creator><creator>Corbin, Joshua G</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091216</creationdate><title>Emx1-Lineage Progenitors Differentially Contribute to Neural Diversity in the Striatum and Amygdala</title><author>Cocas, Laura A ; Miyoshi, Goichi ; Carney, Rosalind S. E ; Sousa, Vitor H ; Hirata, Tsutomu ; Jones, Kevin R ; Fishell, Gord ; Huntsman, Molly M ; Corbin, Joshua G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-ad397e35171b6b9bf1065dcb5c1544117e22e3b52fa7d7fcc8c0f91a4ea575c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amygdala - cytology</topic><topic>Amygdala - embryology</topic><topic>Amygdala - physiology</topic><topic>Animals</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Lineage - genetics</topic><topic>Cell Lineage - physiology</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - embryology</topic><topic>Corpus Striatum - physiology</topic><topic>Female</topic><topic>Homeodomain Proteins - biosynthesis</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neurogenesis - genetics</topic><topic>Neurogenesis - physiology</topic><topic>Neurons - classification</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Pregnancy</topic><topic>Stem Cells - classification</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - physiology</topic><topic>Transcription Factors - biosynthesis</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cocas, Laura A</creatorcontrib><creatorcontrib>Miyoshi, Goichi</creatorcontrib><creatorcontrib>Carney, Rosalind S. E</creatorcontrib><creatorcontrib>Sousa, Vitor H</creatorcontrib><creatorcontrib>Hirata, Tsutomu</creatorcontrib><creatorcontrib>Jones, Kevin R</creatorcontrib><creatorcontrib>Fishell, Gord</creatorcontrib><creatorcontrib>Huntsman, Molly M</creatorcontrib><creatorcontrib>Corbin, Joshua G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cocas, Laura A</au><au>Miyoshi, Goichi</au><au>Carney, Rosalind S. E</au><au>Sousa, Vitor H</au><au>Hirata, Tsutomu</au><au>Jones, Kevin R</au><au>Fishell, Gord</au><au>Huntsman, Molly M</au><au>Corbin, Joshua G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emx1-Lineage Progenitors Differentially Contribute to Neural Diversity in the Striatum and Amygdala</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2009-12-16</date><risdate>2009</risdate><volume>29</volume><issue>50</issue><spage>15933</spage><epage>15946</epage><pages>15933-15946</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>In the developing mammalian basal telencephalon, neural progenitors from the subpallium generate the majority of inhibitory medium spiny neurons (MSNs) in the striatum, while both pallial- and subpallial-derived progenitors contribute to excitatory and inhibitory neuronal diversity in the amygdala. Using a combination of approaches, including genetic fate mapping, cell birth dating, cell migration assays, and electrophysiology, we find that cells derived from the Emx1 lineage contribute to two distinct neuronal populations in the mature basal forebrain: inhibitory MSNs in the striatum and functionally distinct subclasses of excitatory neurons in the amygdala. Our cell birth-dating studies reveal that these two populations are born at different times during early neurogenesis, with the amygdala population born before the MSNs. In the striatum, Emx1-lineage neurons represent a unique subpopulation of MSNs: they are disproportionately localized to the dorsal striatum, are found in dopamine receiving, reelin-positive patches, and are born throughout striatal neurogenesis. In addition, our data suggest that a subpopulation of these Emx1-lineage cells originate in the pallium and subsequently migrate to the developing striatum and amygdala. Our intersectional fate-mapping analysis further reveals that Emx1-lineage cells that coexpress Dlx exclusively generate MSNs but do not contribute to the excitatory neurons in the amygdala. Thus, both the timing of neurogenesis and differential combinatorial gene expression appear to be key determinants of striatal versus amygdala fate decisions of Emx1-lineage cells.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>20016109</pmid><doi>10.1523/JNEUROSCI.2525-09.2009</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2009-12, Vol.29 (50), p.15933-15946 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3679174 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Amygdala - cytology Amygdala - embryology Amygdala - physiology Animals Cell Differentiation - genetics Cell Differentiation - physiology Cell Lineage - genetics Cell Lineage - physiology Corpus Striatum - cytology Corpus Striatum - embryology Corpus Striatum - physiology Female Homeodomain Proteins - biosynthesis Homeodomain Proteins - genetics Homeodomain Proteins - physiology Mice Mice, Inbred C57BL Neurogenesis - genetics Neurogenesis - physiology Neurons - classification Neurons - cytology Neurons - physiology Pregnancy Stem Cells - classification Stem Cells - cytology Stem Cells - physiology Transcription Factors - biosynthesis Transcription Factors - genetics Transcription Factors - physiology |
title | Emx1-Lineage Progenitors Differentially Contribute to Neural Diversity in the Striatum and Amygdala |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T04%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emx1-Lineage%20Progenitors%20Differentially%20Contribute%20to%20Neural%20Diversity%20in%20the%20Striatum%20and%20Amygdala&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Cocas,%20Laura%20A&rft.date=2009-12-16&rft.volume=29&rft.issue=50&rft.spage=15933&rft.epage=15946&rft.pages=15933-15946&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2525-09.2009&rft_dat=%3Cproquest_pubme%3E734199677%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734199677&rft_id=info:pmid/20016109&rfr_iscdi=true |