Emx1-Lineage Progenitors Differentially Contribute to Neural Diversity in the Striatum and Amygdala

In the developing mammalian basal telencephalon, neural progenitors from the subpallium generate the majority of inhibitory medium spiny neurons (MSNs) in the striatum, while both pallial- and subpallial-derived progenitors contribute to excitatory and inhibitory neuronal diversity in the amygdala....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2009-12, Vol.29 (50), p.15933-15946
Hauptverfasser: Cocas, Laura A, Miyoshi, Goichi, Carney, Rosalind S. E, Sousa, Vitor H, Hirata, Tsutomu, Jones, Kevin R, Fishell, Gord, Huntsman, Molly M, Corbin, Joshua G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15946
container_issue 50
container_start_page 15933
container_title The Journal of neuroscience
container_volume 29
creator Cocas, Laura A
Miyoshi, Goichi
Carney, Rosalind S. E
Sousa, Vitor H
Hirata, Tsutomu
Jones, Kevin R
Fishell, Gord
Huntsman, Molly M
Corbin, Joshua G
description In the developing mammalian basal telencephalon, neural progenitors from the subpallium generate the majority of inhibitory medium spiny neurons (MSNs) in the striatum, while both pallial- and subpallial-derived progenitors contribute to excitatory and inhibitory neuronal diversity in the amygdala. Using a combination of approaches, including genetic fate mapping, cell birth dating, cell migration assays, and electrophysiology, we find that cells derived from the Emx1 lineage contribute to two distinct neuronal populations in the mature basal forebrain: inhibitory MSNs in the striatum and functionally distinct subclasses of excitatory neurons in the amygdala. Our cell birth-dating studies reveal that these two populations are born at different times during early neurogenesis, with the amygdala population born before the MSNs. In the striatum, Emx1-lineage neurons represent a unique subpopulation of MSNs: they are disproportionately localized to the dorsal striatum, are found in dopamine receiving, reelin-positive patches, and are born throughout striatal neurogenesis. In addition, our data suggest that a subpopulation of these Emx1-lineage cells originate in the pallium and subsequently migrate to the developing striatum and amygdala. Our intersectional fate-mapping analysis further reveals that Emx1-lineage cells that coexpress Dlx exclusively generate MSNs but do not contribute to the excitatory neurons in the amygdala. Thus, both the timing of neurogenesis and differential combinatorial gene expression appear to be key determinants of striatal versus amygdala fate decisions of Emx1-lineage cells.
doi_str_mv 10.1523/JNEUROSCI.2525-09.2009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3679174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734199677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-ad397e35171b6b9bf1065dcb5c1544117e22e3b52fa7d7fcc8c0f91a4ea575c03</originalsourceid><addsrcrecordid>eNpVkU1vEzEQhi0EoqHwFyrf4LLBY6_X-IJUpQGKohZRera83tmN0X4U29uQf4-jlAhOc5hn3nmlh5ALYEuQXLz_erO-_357t7pecsllwfSSM6afkUXe6oKXDJ6TBeOKFVWpyjPyKsafjDHFQL0kZ5mFCpheELcefkOx8SPaDum3MHU4-jSFSK9822LAMXnb93u6msYUfD0npGmiNzgH22fmEUP0aU_9SNMW6V1mbJoHaseGXg77rrG9fU1etLaP-OZpnpP7T-sfqy_F5vbz9epyUzgJPBW2EVqhkKCgrmpdt8Aq2bhaOpBlCaCQcxS15K1VjWqd--BYq8GWaKWSjolz8vGY-zDXAzYud88lzUPwgw17M1lv_t-Mfmu66dGISmlQZQ54-xQQpl8zxmQGHx32vR1xmqNRogStK6UyWR1JF6YYA7anL8DMQZA5CTIHQYZpcxCUDy_-7Xg6-2skA--OwNZ3250PaOKQBWQczG6349rIwwcthPgDZaydbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734199677</pqid></control><display><type>article</type><title>Emx1-Lineage Progenitors Differentially Contribute to Neural Diversity in the Striatum and Amygdala</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Cocas, Laura A ; Miyoshi, Goichi ; Carney, Rosalind S. E ; Sousa, Vitor H ; Hirata, Tsutomu ; Jones, Kevin R ; Fishell, Gord ; Huntsman, Molly M ; Corbin, Joshua G</creator><creatorcontrib>Cocas, Laura A ; Miyoshi, Goichi ; Carney, Rosalind S. E ; Sousa, Vitor H ; Hirata, Tsutomu ; Jones, Kevin R ; Fishell, Gord ; Huntsman, Molly M ; Corbin, Joshua G</creatorcontrib><description>In the developing mammalian basal telencephalon, neural progenitors from the subpallium generate the majority of inhibitory medium spiny neurons (MSNs) in the striatum, while both pallial- and subpallial-derived progenitors contribute to excitatory and inhibitory neuronal diversity in the amygdala. Using a combination of approaches, including genetic fate mapping, cell birth dating, cell migration assays, and electrophysiology, we find that cells derived from the Emx1 lineage contribute to two distinct neuronal populations in the mature basal forebrain: inhibitory MSNs in the striatum and functionally distinct subclasses of excitatory neurons in the amygdala. Our cell birth-dating studies reveal that these two populations are born at different times during early neurogenesis, with the amygdala population born before the MSNs. In the striatum, Emx1-lineage neurons represent a unique subpopulation of MSNs: they are disproportionately localized to the dorsal striatum, are found in dopamine receiving, reelin-positive patches, and are born throughout striatal neurogenesis. In addition, our data suggest that a subpopulation of these Emx1-lineage cells originate in the pallium and subsequently migrate to the developing striatum and amygdala. Our intersectional fate-mapping analysis further reveals that Emx1-lineage cells that coexpress Dlx exclusively generate MSNs but do not contribute to the excitatory neurons in the amygdala. Thus, both the timing of neurogenesis and differential combinatorial gene expression appear to be key determinants of striatal versus amygdala fate decisions of Emx1-lineage cells.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2525-09.2009</identifier><identifier>PMID: 20016109</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Amygdala - cytology ; Amygdala - embryology ; Amygdala - physiology ; Animals ; Cell Differentiation - genetics ; Cell Differentiation - physiology ; Cell Lineage - genetics ; Cell Lineage - physiology ; Corpus Striatum - cytology ; Corpus Striatum - embryology ; Corpus Striatum - physiology ; Female ; Homeodomain Proteins - biosynthesis ; Homeodomain Proteins - genetics ; Homeodomain Proteins - physiology ; Mice ; Mice, Inbred C57BL ; Neurogenesis - genetics ; Neurogenesis - physiology ; Neurons - classification ; Neurons - cytology ; Neurons - physiology ; Pregnancy ; Stem Cells - classification ; Stem Cells - cytology ; Stem Cells - physiology ; Transcription Factors - biosynthesis ; Transcription Factors - genetics ; Transcription Factors - physiology</subject><ispartof>The Journal of neuroscience, 2009-12, Vol.29 (50), p.15933-15946</ispartof><rights>Copyright © 2009 Society for Neuroscience 0270-6474/09/2915933-14$15.00/0 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-ad397e35171b6b9bf1065dcb5c1544117e22e3b52fa7d7fcc8c0f91a4ea575c03</citedby><cites>FETCH-LOGICAL-c512t-ad397e35171b6b9bf1065dcb5c1544117e22e3b52fa7d7fcc8c0f91a4ea575c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679174/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679174/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20016109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cocas, Laura A</creatorcontrib><creatorcontrib>Miyoshi, Goichi</creatorcontrib><creatorcontrib>Carney, Rosalind S. E</creatorcontrib><creatorcontrib>Sousa, Vitor H</creatorcontrib><creatorcontrib>Hirata, Tsutomu</creatorcontrib><creatorcontrib>Jones, Kevin R</creatorcontrib><creatorcontrib>Fishell, Gord</creatorcontrib><creatorcontrib>Huntsman, Molly M</creatorcontrib><creatorcontrib>Corbin, Joshua G</creatorcontrib><title>Emx1-Lineage Progenitors Differentially Contribute to Neural Diversity in the Striatum and Amygdala</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>In the developing mammalian basal telencephalon, neural progenitors from the subpallium generate the majority of inhibitory medium spiny neurons (MSNs) in the striatum, while both pallial- and subpallial-derived progenitors contribute to excitatory and inhibitory neuronal diversity in the amygdala. Using a combination of approaches, including genetic fate mapping, cell birth dating, cell migration assays, and electrophysiology, we find that cells derived from the Emx1 lineage contribute to two distinct neuronal populations in the mature basal forebrain: inhibitory MSNs in the striatum and functionally distinct subclasses of excitatory neurons in the amygdala. Our cell birth-dating studies reveal that these two populations are born at different times during early neurogenesis, with the amygdala population born before the MSNs. In the striatum, Emx1-lineage neurons represent a unique subpopulation of MSNs: they are disproportionately localized to the dorsal striatum, are found in dopamine receiving, reelin-positive patches, and are born throughout striatal neurogenesis. In addition, our data suggest that a subpopulation of these Emx1-lineage cells originate in the pallium and subsequently migrate to the developing striatum and amygdala. Our intersectional fate-mapping analysis further reveals that Emx1-lineage cells that coexpress Dlx exclusively generate MSNs but do not contribute to the excitatory neurons in the amygdala. Thus, both the timing of neurogenesis and differential combinatorial gene expression appear to be key determinants of striatal versus amygdala fate decisions of Emx1-lineage cells.</description><subject>Amygdala - cytology</subject><subject>Amygdala - embryology</subject><subject>Amygdala - physiology</subject><subject>Animals</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Lineage - genetics</subject><subject>Cell Lineage - physiology</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - embryology</subject><subject>Corpus Striatum - physiology</subject><subject>Female</subject><subject>Homeodomain Proteins - biosynthesis</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neurogenesis - genetics</subject><subject>Neurogenesis - physiology</subject><subject>Neurons - classification</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Pregnancy</subject><subject>Stem Cells - classification</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - physiology</subject><subject>Transcription Factors - biosynthesis</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1vEzEQhi0EoqHwFyrf4LLBY6_X-IJUpQGKohZRera83tmN0X4U29uQf4-jlAhOc5hn3nmlh5ALYEuQXLz_erO-_357t7pecsllwfSSM6afkUXe6oKXDJ6TBeOKFVWpyjPyKsafjDHFQL0kZ5mFCpheELcefkOx8SPaDum3MHU4-jSFSK9822LAMXnb93u6msYUfD0npGmiNzgH22fmEUP0aU_9SNMW6V1mbJoHaseGXg77rrG9fU1etLaP-OZpnpP7T-sfqy_F5vbz9epyUzgJPBW2EVqhkKCgrmpdt8Aq2bhaOpBlCaCQcxS15K1VjWqd--BYq8GWaKWSjolz8vGY-zDXAzYud88lzUPwgw17M1lv_t-Mfmu66dGISmlQZQ54-xQQpl8zxmQGHx32vR1xmqNRogStK6UyWR1JF6YYA7anL8DMQZA5CTIHQYZpcxCUDy_-7Xg6-2skA--OwNZ3250PaOKQBWQczG6349rIwwcthPgDZaydbw</recordid><startdate>20091216</startdate><enddate>20091216</enddate><creator>Cocas, Laura A</creator><creator>Miyoshi, Goichi</creator><creator>Carney, Rosalind S. E</creator><creator>Sousa, Vitor H</creator><creator>Hirata, Tsutomu</creator><creator>Jones, Kevin R</creator><creator>Fishell, Gord</creator><creator>Huntsman, Molly M</creator><creator>Corbin, Joshua G</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091216</creationdate><title>Emx1-Lineage Progenitors Differentially Contribute to Neural Diversity in the Striatum and Amygdala</title><author>Cocas, Laura A ; Miyoshi, Goichi ; Carney, Rosalind S. E ; Sousa, Vitor H ; Hirata, Tsutomu ; Jones, Kevin R ; Fishell, Gord ; Huntsman, Molly M ; Corbin, Joshua G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-ad397e35171b6b9bf1065dcb5c1544117e22e3b52fa7d7fcc8c0f91a4ea575c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amygdala - cytology</topic><topic>Amygdala - embryology</topic><topic>Amygdala - physiology</topic><topic>Animals</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Lineage - genetics</topic><topic>Cell Lineage - physiology</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - embryology</topic><topic>Corpus Striatum - physiology</topic><topic>Female</topic><topic>Homeodomain Proteins - biosynthesis</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neurogenesis - genetics</topic><topic>Neurogenesis - physiology</topic><topic>Neurons - classification</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Pregnancy</topic><topic>Stem Cells - classification</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - physiology</topic><topic>Transcription Factors - biosynthesis</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cocas, Laura A</creatorcontrib><creatorcontrib>Miyoshi, Goichi</creatorcontrib><creatorcontrib>Carney, Rosalind S. E</creatorcontrib><creatorcontrib>Sousa, Vitor H</creatorcontrib><creatorcontrib>Hirata, Tsutomu</creatorcontrib><creatorcontrib>Jones, Kevin R</creatorcontrib><creatorcontrib>Fishell, Gord</creatorcontrib><creatorcontrib>Huntsman, Molly M</creatorcontrib><creatorcontrib>Corbin, Joshua G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cocas, Laura A</au><au>Miyoshi, Goichi</au><au>Carney, Rosalind S. E</au><au>Sousa, Vitor H</au><au>Hirata, Tsutomu</au><au>Jones, Kevin R</au><au>Fishell, Gord</au><au>Huntsman, Molly M</au><au>Corbin, Joshua G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emx1-Lineage Progenitors Differentially Contribute to Neural Diversity in the Striatum and Amygdala</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2009-12-16</date><risdate>2009</risdate><volume>29</volume><issue>50</issue><spage>15933</spage><epage>15946</epage><pages>15933-15946</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>In the developing mammalian basal telencephalon, neural progenitors from the subpallium generate the majority of inhibitory medium spiny neurons (MSNs) in the striatum, while both pallial- and subpallial-derived progenitors contribute to excitatory and inhibitory neuronal diversity in the amygdala. Using a combination of approaches, including genetic fate mapping, cell birth dating, cell migration assays, and electrophysiology, we find that cells derived from the Emx1 lineage contribute to two distinct neuronal populations in the mature basal forebrain: inhibitory MSNs in the striatum and functionally distinct subclasses of excitatory neurons in the amygdala. Our cell birth-dating studies reveal that these two populations are born at different times during early neurogenesis, with the amygdala population born before the MSNs. In the striatum, Emx1-lineage neurons represent a unique subpopulation of MSNs: they are disproportionately localized to the dorsal striatum, are found in dopamine receiving, reelin-positive patches, and are born throughout striatal neurogenesis. In addition, our data suggest that a subpopulation of these Emx1-lineage cells originate in the pallium and subsequently migrate to the developing striatum and amygdala. Our intersectional fate-mapping analysis further reveals that Emx1-lineage cells that coexpress Dlx exclusively generate MSNs but do not contribute to the excitatory neurons in the amygdala. Thus, both the timing of neurogenesis and differential combinatorial gene expression appear to be key determinants of striatal versus amygdala fate decisions of Emx1-lineage cells.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>20016109</pmid><doi>10.1523/JNEUROSCI.2525-09.2009</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2009-12, Vol.29 (50), p.15933-15946
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3679174
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Amygdala - cytology
Amygdala - embryology
Amygdala - physiology
Animals
Cell Differentiation - genetics
Cell Differentiation - physiology
Cell Lineage - genetics
Cell Lineage - physiology
Corpus Striatum - cytology
Corpus Striatum - embryology
Corpus Striatum - physiology
Female
Homeodomain Proteins - biosynthesis
Homeodomain Proteins - genetics
Homeodomain Proteins - physiology
Mice
Mice, Inbred C57BL
Neurogenesis - genetics
Neurogenesis - physiology
Neurons - classification
Neurons - cytology
Neurons - physiology
Pregnancy
Stem Cells - classification
Stem Cells - cytology
Stem Cells - physiology
Transcription Factors - biosynthesis
Transcription Factors - genetics
Transcription Factors - physiology
title Emx1-Lineage Progenitors Differentially Contribute to Neural Diversity in the Striatum and Amygdala
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T04%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emx1-Lineage%20Progenitors%20Differentially%20Contribute%20to%20Neural%20Diversity%20in%20the%20Striatum%20and%20Amygdala&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Cocas,%20Laura%20A&rft.date=2009-12-16&rft.volume=29&rft.issue=50&rft.spage=15933&rft.epage=15946&rft.pages=15933-15946&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2525-09.2009&rft_dat=%3Cproquest_pubme%3E734199677%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734199677&rft_id=info:pmid/20016109&rfr_iscdi=true