A novel pathway spatiotemporally activates Rac1 and redox signaling in response to fluid shear stress

Hemodynamic forces regulate embryonic organ development, hematopoiesis, vascular remodeling, and atherogenesis. The mechanosensory stimulus of blood flow initiates a complex network of intracellular pathways, including activation of Rac1 GTPase, establishment of endothelial cell (EC) polarity, and r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2013-06, Vol.201 (6), p.863-873
Hauptverfasser: Liu, Yunhao, Collins, Caitlin, Kiosses, William B, Murray, Ann M, Joshi, Monika, Shepherd, Tyson R, Fuentes, Ernesto J, Tzima, Ellie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 873
container_issue 6
container_start_page 863
container_title The Journal of cell biology
container_volume 201
creator Liu, Yunhao
Collins, Caitlin
Kiosses, William B
Murray, Ann M
Joshi, Monika
Shepherd, Tyson R
Fuentes, Ernesto J
Tzima, Ellie
description Hemodynamic forces regulate embryonic organ development, hematopoiesis, vascular remodeling, and atherogenesis. The mechanosensory stimulus of blood flow initiates a complex network of intracellular pathways, including activation of Rac1 GTPase, establishment of endothelial cell (EC) polarity, and redox signaling. The activity of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can be modulated by the GTP/GDP state of Rac1; however, the molecular mechanisms of Rac1 activation by flow are poorly understood. Here, we identify a novel polarity complex that directs localized Rac1 activation required for downstream reactive oxygen species (ROS) production. Vav2 is required for Rac1 GTP loading, whereas, surprisingly, Tiam1 functions as an adaptor in a VE-cadherin-p67phox-Par3 polarity complex that directs localized activation of Rac1. Furthermore, loss of Tiam1 led to the disruption of redox signaling both in vitro and in vivo. Our results describe a novel molecular cascade that regulates redox signaling by the coordinated regulation of Rac1 and by linking components of the polarity complex to the NADPH oxidase.
doi_str_mv 10.1083/jcb.201207115
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3678169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2997769591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-b054342eb7b751bce58a7985404db61c557ee43b15f07597de827bcafc081f313</originalsourceid><addsrcrecordid>eNpdkc2LFDEQxYO4uOPq0asEvHjp3Xx2MhdhWfyChQXRc0jS1TMZepI2SY_Of2_WXQf1VEXVj0e9egi9ouSSEs2vdt5dMkIZUZTKJ2hFpSCdpoI8RStCGO3Wkslz9LyUHSFEKMGfoXPGFedc9CsE1zimA0x4tnX7wx5xaU1IFfZzynaajtj6Gg62QsFfrKfYxgFnGNJPXMIm2inEDQ6xjcqcYgFcEx6nJQy4bMFmXGrblBfobLRTgZeP9QJ9-_D-682n7vbu4-eb69vOC01r54gUXDBwyilJnQeprVrr5kgMrqdeSgUguKNyJEqu1QCaKeft6ImmI6f8Ar170J0Xt4fBQ6zNhJlz2Nt8NMkG8-8mhq3ZpIPhvdK0XzeBt48COX1foFSzD8XDNNkIaSmG8r7XjPWCN_TNf-guLbl95DelGSec9Y3qHiifUykZxtMxlJj7AE0L0JwCbPzrvx2c6D-J8V_pxpfE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1368230326</pqid></control><display><type>article</type><title>A novel pathway spatiotemporally activates Rac1 and redox signaling in response to fluid shear stress</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Yunhao ; Collins, Caitlin ; Kiosses, William B ; Murray, Ann M ; Joshi, Monika ; Shepherd, Tyson R ; Fuentes, Ernesto J ; Tzima, Ellie</creator><creatorcontrib>Liu, Yunhao ; Collins, Caitlin ; Kiosses, William B ; Murray, Ann M ; Joshi, Monika ; Shepherd, Tyson R ; Fuentes, Ernesto J ; Tzima, Ellie</creatorcontrib><description>Hemodynamic forces regulate embryonic organ development, hematopoiesis, vascular remodeling, and atherogenesis. The mechanosensory stimulus of blood flow initiates a complex network of intracellular pathways, including activation of Rac1 GTPase, establishment of endothelial cell (EC) polarity, and redox signaling. The activity of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can be modulated by the GTP/GDP state of Rac1; however, the molecular mechanisms of Rac1 activation by flow are poorly understood. Here, we identify a novel polarity complex that directs localized Rac1 activation required for downstream reactive oxygen species (ROS) production. Vav2 is required for Rac1 GTP loading, whereas, surprisingly, Tiam1 functions as an adaptor in a VE-cadherin-p67phox-Par3 polarity complex that directs localized activation of Rac1. Furthermore, loss of Tiam1 led to the disruption of redox signaling both in vitro and in vivo. Our results describe a novel molecular cascade that regulates redox signaling by the coordinated regulation of Rac1 and by linking components of the polarity complex to the NADPH oxidase.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.201207115</identifier><identifier>PMID: 23733346</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Animals ; Antigens, CD - genetics ; Antigens, CD - metabolism ; Aorta - physiology ; Blood ; Cadherins - genetics ; Cadherins - metabolism ; Cell Adhesion Molecules - metabolism ; Cell Cycle Proteins - metabolism ; Cells ; Cells, Cultured ; Embryonic Stem Cells - cytology ; Guanine Nucleotide Exchange Factors - genetics ; Guanine Nucleotide Exchange Factors - metabolism ; Human Umbilical Vein Endothelial Cells ; Humans ; Membrane Proteins - metabolism ; Mice ; Mice, Knockout ; Neuropeptides - genetics ; Neuropeptides - metabolism ; Oxidation-Reduction ; Oxidative Stress - physiology ; Oxygen ; Phosphoproteins - metabolism ; Platelet Endothelial Cell Adhesion Molecule-1 - genetics ; Platelet Endothelial Cell Adhesion Molecule-1 - metabolism ; rac GTP-Binding Proteins - genetics ; rac GTP-Binding Proteins - metabolism ; rac1 GTP-Binding Protein - genetics ; rac1 GTP-Binding Protein - metabolism ; RNA, Small Interfering - genetics ; Shear stress ; Signal Transduction - physiology ; Stress, Mechanical ; T-Lymphoma Invasion and Metastasis-inducing Protein 1</subject><ispartof>The Journal of cell biology, 2013-06, Vol.201 (6), p.863-873</ispartof><rights>Copyright Rockefeller University Press Jun 10, 2013</rights><rights>2013 Liu et al. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-b054342eb7b751bce58a7985404db61c557ee43b15f07597de827bcafc081f313</citedby><cites>FETCH-LOGICAL-c481t-b054342eb7b751bce58a7985404db61c557ee43b15f07597de827bcafc081f313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23733346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yunhao</creatorcontrib><creatorcontrib>Collins, Caitlin</creatorcontrib><creatorcontrib>Kiosses, William B</creatorcontrib><creatorcontrib>Murray, Ann M</creatorcontrib><creatorcontrib>Joshi, Monika</creatorcontrib><creatorcontrib>Shepherd, Tyson R</creatorcontrib><creatorcontrib>Fuentes, Ernesto J</creatorcontrib><creatorcontrib>Tzima, Ellie</creatorcontrib><title>A novel pathway spatiotemporally activates Rac1 and redox signaling in response to fluid shear stress</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Hemodynamic forces regulate embryonic organ development, hematopoiesis, vascular remodeling, and atherogenesis. The mechanosensory stimulus of blood flow initiates a complex network of intracellular pathways, including activation of Rac1 GTPase, establishment of endothelial cell (EC) polarity, and redox signaling. The activity of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can be modulated by the GTP/GDP state of Rac1; however, the molecular mechanisms of Rac1 activation by flow are poorly understood. Here, we identify a novel polarity complex that directs localized Rac1 activation required for downstream reactive oxygen species (ROS) production. Vav2 is required for Rac1 GTP loading, whereas, surprisingly, Tiam1 functions as an adaptor in a VE-cadherin-p67phox-Par3 polarity complex that directs localized activation of Rac1. Furthermore, loss of Tiam1 led to the disruption of redox signaling both in vitro and in vivo. Our results describe a novel molecular cascade that regulates redox signaling by the coordinated regulation of Rac1 and by linking components of the polarity complex to the NADPH oxidase.</description><subject>Animals</subject><subject>Antigens, CD - genetics</subject><subject>Antigens, CD - metabolism</subject><subject>Aorta - physiology</subject><subject>Blood</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cells</subject><subject>Cells, Cultured</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Guanine Nucleotide Exchange Factors - genetics</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress - physiology</subject><subject>Oxygen</subject><subject>Phosphoproteins - metabolism</subject><subject>Platelet Endothelial Cell Adhesion Molecule-1 - genetics</subject><subject>Platelet Endothelial Cell Adhesion Molecule-1 - metabolism</subject><subject>rac GTP-Binding Proteins - genetics</subject><subject>rac GTP-Binding Proteins - metabolism</subject><subject>rac1 GTP-Binding Protein - genetics</subject><subject>rac1 GTP-Binding Protein - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>Shear stress</subject><subject>Signal Transduction - physiology</subject><subject>Stress, Mechanical</subject><subject>T-Lymphoma Invasion and Metastasis-inducing Protein 1</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc2LFDEQxYO4uOPq0asEvHjp3Xx2MhdhWfyChQXRc0jS1TMZepI2SY_Of2_WXQf1VEXVj0e9egi9ouSSEs2vdt5dMkIZUZTKJ2hFpSCdpoI8RStCGO3Wkslz9LyUHSFEKMGfoXPGFedc9CsE1zimA0x4tnX7wx5xaU1IFfZzynaajtj6Gg62QsFfrKfYxgFnGNJPXMIm2inEDQ6xjcqcYgFcEx6nJQy4bMFmXGrblBfobLRTgZeP9QJ9-_D-682n7vbu4-eb69vOC01r54gUXDBwyilJnQeprVrr5kgMrqdeSgUguKNyJEqu1QCaKeft6ImmI6f8Ar170J0Xt4fBQ6zNhJlz2Nt8NMkG8-8mhq3ZpIPhvdK0XzeBt48COX1foFSzD8XDNNkIaSmG8r7XjPWCN_TNf-guLbl95DelGSec9Y3qHiifUykZxtMxlJj7AE0L0JwCbPzrvx2c6D-J8V_pxpfE</recordid><startdate>20130610</startdate><enddate>20130610</enddate><creator>Liu, Yunhao</creator><creator>Collins, Caitlin</creator><creator>Kiosses, William B</creator><creator>Murray, Ann M</creator><creator>Joshi, Monika</creator><creator>Shepherd, Tyson R</creator><creator>Fuentes, Ernesto J</creator><creator>Tzima, Ellie</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130610</creationdate><title>A novel pathway spatiotemporally activates Rac1 and redox signaling in response to fluid shear stress</title><author>Liu, Yunhao ; Collins, Caitlin ; Kiosses, William B ; Murray, Ann M ; Joshi, Monika ; Shepherd, Tyson R ; Fuentes, Ernesto J ; Tzima, Ellie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-b054342eb7b751bce58a7985404db61c557ee43b15f07597de827bcafc081f313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Antigens, CD - genetics</topic><topic>Antigens, CD - metabolism</topic><topic>Aorta - physiology</topic><topic>Blood</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cells</topic><topic>Cells, Cultured</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Guanine Nucleotide Exchange Factors - genetics</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress - physiology</topic><topic>Oxygen</topic><topic>Phosphoproteins - metabolism</topic><topic>Platelet Endothelial Cell Adhesion Molecule-1 - genetics</topic><topic>Platelet Endothelial Cell Adhesion Molecule-1 - metabolism</topic><topic>rac GTP-Binding Proteins - genetics</topic><topic>rac GTP-Binding Proteins - metabolism</topic><topic>rac1 GTP-Binding Protein - genetics</topic><topic>rac1 GTP-Binding Protein - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>Shear stress</topic><topic>Signal Transduction - physiology</topic><topic>Stress, Mechanical</topic><topic>T-Lymphoma Invasion and Metastasis-inducing Protein 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yunhao</creatorcontrib><creatorcontrib>Collins, Caitlin</creatorcontrib><creatorcontrib>Kiosses, William B</creatorcontrib><creatorcontrib>Murray, Ann M</creatorcontrib><creatorcontrib>Joshi, Monika</creatorcontrib><creatorcontrib>Shepherd, Tyson R</creatorcontrib><creatorcontrib>Fuentes, Ernesto J</creatorcontrib><creatorcontrib>Tzima, Ellie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yunhao</au><au>Collins, Caitlin</au><au>Kiosses, William B</au><au>Murray, Ann M</au><au>Joshi, Monika</au><au>Shepherd, Tyson R</au><au>Fuentes, Ernesto J</au><au>Tzima, Ellie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel pathway spatiotemporally activates Rac1 and redox signaling in response to fluid shear stress</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2013-06-10</date><risdate>2013</risdate><volume>201</volume><issue>6</issue><spage>863</spage><epage>873</epage><pages>863-873</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Hemodynamic forces regulate embryonic organ development, hematopoiesis, vascular remodeling, and atherogenesis. The mechanosensory stimulus of blood flow initiates a complex network of intracellular pathways, including activation of Rac1 GTPase, establishment of endothelial cell (EC) polarity, and redox signaling. The activity of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can be modulated by the GTP/GDP state of Rac1; however, the molecular mechanisms of Rac1 activation by flow are poorly understood. Here, we identify a novel polarity complex that directs localized Rac1 activation required for downstream reactive oxygen species (ROS) production. Vav2 is required for Rac1 GTP loading, whereas, surprisingly, Tiam1 functions as an adaptor in a VE-cadherin-p67phox-Par3 polarity complex that directs localized activation of Rac1. Furthermore, loss of Tiam1 led to the disruption of redox signaling both in vitro and in vivo. Our results describe a novel molecular cascade that regulates redox signaling by the coordinated regulation of Rac1 and by linking components of the polarity complex to the NADPH oxidase.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>23733346</pmid><doi>10.1083/jcb.201207115</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 2013-06, Vol.201 (6), p.863-873
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3678169
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Antigens, CD - genetics
Antigens, CD - metabolism
Aorta - physiology
Blood
Cadherins - genetics
Cadherins - metabolism
Cell Adhesion Molecules - metabolism
Cell Cycle Proteins - metabolism
Cells
Cells, Cultured
Embryonic Stem Cells - cytology
Guanine Nucleotide Exchange Factors - genetics
Guanine Nucleotide Exchange Factors - metabolism
Human Umbilical Vein Endothelial Cells
Humans
Membrane Proteins - metabolism
Mice
Mice, Knockout
Neuropeptides - genetics
Neuropeptides - metabolism
Oxidation-Reduction
Oxidative Stress - physiology
Oxygen
Phosphoproteins - metabolism
Platelet Endothelial Cell Adhesion Molecule-1 - genetics
Platelet Endothelial Cell Adhesion Molecule-1 - metabolism
rac GTP-Binding Proteins - genetics
rac GTP-Binding Proteins - metabolism
rac1 GTP-Binding Protein - genetics
rac1 GTP-Binding Protein - metabolism
RNA, Small Interfering - genetics
Shear stress
Signal Transduction - physiology
Stress, Mechanical
T-Lymphoma Invasion and Metastasis-inducing Protein 1
title A novel pathway spatiotemporally activates Rac1 and redox signaling in response to fluid shear stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20pathway%20spatiotemporally%20activates%20Rac1%20and%20redox%20signaling%20in%20response%20to%20fluid%20shear%20stress&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Liu,%20Yunhao&rft.date=2013-06-10&rft.volume=201&rft.issue=6&rft.spage=863&rft.epage=873&rft.pages=863-873&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.201207115&rft_dat=%3Cproquest_pubme%3E2997769591%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1368230326&rft_id=info:pmid/23733346&rfr_iscdi=true