Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays

Recent advances in magnet technology have enabled the construction of ultrahigh‐field magnets (7T and higher) that can accommodate the human head and body. Despite the intrinsic advantages of performing spectroscopic imaging at 7T, increased signal‐to‐noise ratio (SNR), and spectral resolution, few...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2009-07, Vol.62 (1), p.17-25
Hauptverfasser: Avdievich, N.I., Pan, J.W., Baehring, J.M., Spencer, D.D., Hetherington, H.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 1
container_start_page 17
container_title Magnetic resonance in medicine
container_volume 62
creator Avdievich, N.I.
Pan, J.W.
Baehring, J.M.
Spencer, D.D.
Hetherington, H.P.
description Recent advances in magnet technology have enabled the construction of ultrahigh‐field magnets (7T and higher) that can accommodate the human head and body. Despite the intrinsic advantages of performing spectroscopic imaging at 7T, increased signal‐to‐noise ratio (SNR), and spectral resolution, few studies have been reported to date. This limitation is largely due to increased power deposition and B1 inhomogeneity. To overcome these limitations, we used an 8‐channel transceiver array with a short TE (15 ms) spectroscopic imaging sequence. Utilizing phase and amplitude mapping and optimization schemes, the 8‐element transceiver array provided both improved efficiency (17% less power for equivalent peak B1) and homogeneity (SD(B1) = ±10% versus ±22%) in comparison to a transverse electromagnetic (TEM) volume coil. To minimize the echo time to measure J‐modulating compounds such as glutamate, we developed a short TE sequence utilizing a single‐slice selective excitation pulse followed by a broadband semiselective refocusing pulse. Extracerebral lipid resonances were suppressed with an inversion recovery pulse and delay. The short TE sequence enabled visualization of a variety of resonances, including glutamate, in both a control subject and a patient with a Grade II oligodendroglioma. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.
doi_str_mv 10.1002/mrm.21970
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3675773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883039365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4830-e91fea0049b32625844952c30d56c70401c02f791ba20c1e3ca740cae76333033</originalsourceid><addsrcrecordid>eNp9kc1uEzEUhS1ERUPLghdAXlGxmPb6bxxvkKqqf1JTqhDE0nJcT8YwM07tmbZ5-zpNKLCAlRf3u0ef70HoPYFDAkCP2tgeUqIkvEIjIigtqFD8NRqB5FAwovguepvSDwBQSvI3aJcoVoqxICM0_VqH2GNn64DT0tk-hmTD0lvsW7Pw3QKHCve1w_XQmg7Po_EdNj2WMzyk9biPpkvW-XsXsYnRrNI-2qlMk9y77buHvp2dzk4uiqsv55cnx1eF5WMGhVOkcgaAqzmjJRVjzpWglsGtKK0EDsQCraQic0PBEsesyd-xxsmSMQaM7aHPm9zlMG_drXVddmn0MmbzuNLBeP33pPO1XoR7zUoppFwHHGwDYrgbXOp16_NXmsZ0LgxJj7MmW18qkx__S5aSM5n1M_hpA9p8xxRd9aJDQK-70rkr_dxVZj_86f-b3JaTgaMN8OAbt_p3kp5MJ78ii82GT717fNkw8WdWZFLo79fnWs2uby4miukpewIHW604</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67437495</pqid></control><display><type>article</type><title>Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Wiley Online Library Journals【Remote access available】</source><creator>Avdievich, N.I. ; Pan, J.W. ; Baehring, J.M. ; Spencer, D.D. ; Hetherington, H.P.</creator><creatorcontrib>Avdievich, N.I. ; Pan, J.W. ; Baehring, J.M. ; Spencer, D.D. ; Hetherington, H.P.</creatorcontrib><description>Recent advances in magnet technology have enabled the construction of ultrahigh‐field magnets (7T and higher) that can accommodate the human head and body. Despite the intrinsic advantages of performing spectroscopic imaging at 7T, increased signal‐to‐noise ratio (SNR), and spectral resolution, few studies have been reported to date. This limitation is largely due to increased power deposition and B1 inhomogeneity. To overcome these limitations, we used an 8‐channel transceiver array with a short TE (15 ms) spectroscopic imaging sequence. Utilizing phase and amplitude mapping and optimization schemes, the 8‐element transceiver array provided both improved efficiency (17% less power for equivalent peak B1) and homogeneity (SD(B1) = ±10% versus ±22%) in comparison to a transverse electromagnetic (TEM) volume coil. To minimize the echo time to measure J‐modulating compounds such as glutamate, we developed a short TE sequence utilizing a single‐slice selective excitation pulse followed by a broadband semiselective refocusing pulse. Extracerebral lipid resonances were suppressed with an inversion recovery pulse and delay. The short TE sequence enabled visualization of a variety of resonances, including glutamate, in both a control subject and a patient with a Grade II oligodendroglioma. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>ISSN: 1522-2594</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.21970</identifier><identifier>PMID: 19365851</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Biomarkers, Tumor - analysis ; Brain ; Brain - metabolism ; Brain Neoplasms - diagnosis ; Brain Neoplasms - metabolism ; Equipment Design ; Equipment Failure Analysis ; Glutamic acid ; Glutamic Acid - analysis ; Head ; human brain ; Humans ; Image Enhancement - instrumentation ; Inversion ; Lipids ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Spectroscopy - instrumentation ; Magnetics - instrumentation ; N.M.R ; Neuroimaging ; oligodendroglioma ; Oligodendroglioma - diagnosis ; Oligodendroglioma - metabolism ; Reproducibility of Results ; Sensitivity and Specificity ; short echo spectroscopic imaging ; transceiver arrays ; Transducers</subject><ispartof>Magnetic resonance in medicine, 2009-07, Vol.62 (1), p.17-25</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><rights>(c) 2009 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4830-e91fea0049b32625844952c30d56c70401c02f791ba20c1e3ca740cae76333033</citedby><cites>FETCH-LOGICAL-c4830-e91fea0049b32625844952c30d56c70401c02f791ba20c1e3ca740cae76333033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.21970$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.21970$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,1435,27933,27934,45583,45584,46418,46842</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19365851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Avdievich, N.I.</creatorcontrib><creatorcontrib>Pan, J.W.</creatorcontrib><creatorcontrib>Baehring, J.M.</creatorcontrib><creatorcontrib>Spencer, D.D.</creatorcontrib><creatorcontrib>Hetherington, H.P.</creatorcontrib><title>Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Recent advances in magnet technology have enabled the construction of ultrahigh‐field magnets (7T and higher) that can accommodate the human head and body. Despite the intrinsic advantages of performing spectroscopic imaging at 7T, increased signal‐to‐noise ratio (SNR), and spectral resolution, few studies have been reported to date. This limitation is largely due to increased power deposition and B1 inhomogeneity. To overcome these limitations, we used an 8‐channel transceiver array with a short TE (15 ms) spectroscopic imaging sequence. Utilizing phase and amplitude mapping and optimization schemes, the 8‐element transceiver array provided both improved efficiency (17% less power for equivalent peak B1) and homogeneity (SD(B1) = ±10% versus ±22%) in comparison to a transverse electromagnetic (TEM) volume coil. To minimize the echo time to measure J‐modulating compounds such as glutamate, we developed a short TE sequence utilizing a single‐slice selective excitation pulse followed by a broadband semiselective refocusing pulse. Extracerebral lipid resonances were suppressed with an inversion recovery pulse and delay. The short TE sequence enabled visualization of a variety of resonances, including glutamate, in both a control subject and a patient with a Grade II oligodendroglioma. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.</description><subject>Biomarkers, Tumor - analysis</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain Neoplasms - diagnosis</subject><subject>Brain Neoplasms - metabolism</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Glutamic acid</subject><subject>Glutamic Acid - analysis</subject><subject>Head</subject><subject>human brain</subject><subject>Humans</subject><subject>Image Enhancement - instrumentation</subject><subject>Inversion</subject><subject>Lipids</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Spectroscopy - instrumentation</subject><subject>Magnetics - instrumentation</subject><subject>N.M.R</subject><subject>Neuroimaging</subject><subject>oligodendroglioma</subject><subject>Oligodendroglioma - diagnosis</subject><subject>Oligodendroglioma - metabolism</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>short echo spectroscopic imaging</subject><subject>transceiver arrays</subject><subject>Transducers</subject><issn>0740-3194</issn><issn>1522-2594</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1uEzEUhS1ERUPLghdAXlGxmPb6bxxvkKqqf1JTqhDE0nJcT8YwM07tmbZ5-zpNKLCAlRf3u0ef70HoPYFDAkCP2tgeUqIkvEIjIigtqFD8NRqB5FAwovguepvSDwBQSvI3aJcoVoqxICM0_VqH2GNn64DT0tk-hmTD0lvsW7Pw3QKHCve1w_XQmg7Po_EdNj2WMzyk9biPpkvW-XsXsYnRrNI-2qlMk9y77buHvp2dzk4uiqsv55cnx1eF5WMGhVOkcgaAqzmjJRVjzpWglsGtKK0EDsQCraQic0PBEsesyd-xxsmSMQaM7aHPm9zlMG_drXVddmn0MmbzuNLBeP33pPO1XoR7zUoppFwHHGwDYrgbXOp16_NXmsZ0LgxJj7MmW18qkx__S5aSM5n1M_hpA9p8xxRd9aJDQK-70rkr_dxVZj_86f-b3JaTgaMN8OAbt_p3kp5MJ78ii82GT717fNkw8WdWZFLo79fnWs2uby4miukpewIHW604</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Avdievich, N.I.</creator><creator>Pan, J.W.</creator><creator>Baehring, J.M.</creator><creator>Spencer, D.D.</creator><creator>Hetherington, H.P.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>200907</creationdate><title>Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays</title><author>Avdievich, N.I. ; Pan, J.W. ; Baehring, J.M. ; Spencer, D.D. ; Hetherington, H.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4830-e91fea0049b32625844952c30d56c70401c02f791ba20c1e3ca740cae76333033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biomarkers, Tumor - analysis</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain Neoplasms - diagnosis</topic><topic>Brain Neoplasms - metabolism</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Glutamic acid</topic><topic>Glutamic Acid - analysis</topic><topic>Head</topic><topic>human brain</topic><topic>Humans</topic><topic>Image Enhancement - instrumentation</topic><topic>Inversion</topic><topic>Lipids</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Spectroscopy - instrumentation</topic><topic>Magnetics - instrumentation</topic><topic>N.M.R</topic><topic>Neuroimaging</topic><topic>oligodendroglioma</topic><topic>Oligodendroglioma - diagnosis</topic><topic>Oligodendroglioma - metabolism</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>short echo spectroscopic imaging</topic><topic>transceiver arrays</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avdievich, N.I.</creatorcontrib><creatorcontrib>Pan, J.W.</creatorcontrib><creatorcontrib>Baehring, J.M.</creatorcontrib><creatorcontrib>Spencer, D.D.</creatorcontrib><creatorcontrib>Hetherington, H.P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avdievich, N.I.</au><au>Pan, J.W.</au><au>Baehring, J.M.</au><au>Spencer, D.D.</au><au>Hetherington, H.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2009-07</date><risdate>2009</risdate><volume>62</volume><issue>1</issue><spage>17</spage><epage>25</epage><pages>17-25</pages><issn>0740-3194</issn><issn>1522-2594</issn><eissn>1522-2594</eissn><abstract>Recent advances in magnet technology have enabled the construction of ultrahigh‐field magnets (7T and higher) that can accommodate the human head and body. Despite the intrinsic advantages of performing spectroscopic imaging at 7T, increased signal‐to‐noise ratio (SNR), and spectral resolution, few studies have been reported to date. This limitation is largely due to increased power deposition and B1 inhomogeneity. To overcome these limitations, we used an 8‐channel transceiver array with a short TE (15 ms) spectroscopic imaging sequence. Utilizing phase and amplitude mapping and optimization schemes, the 8‐element transceiver array provided both improved efficiency (17% less power for equivalent peak B1) and homogeneity (SD(B1) = ±10% versus ±22%) in comparison to a transverse electromagnetic (TEM) volume coil. To minimize the echo time to measure J‐modulating compounds such as glutamate, we developed a short TE sequence utilizing a single‐slice selective excitation pulse followed by a broadband semiselective refocusing pulse. Extracerebral lipid resonances were suppressed with an inversion recovery pulse and delay. The short TE sequence enabled visualization of a variety of resonances, including glutamate, in both a control subject and a patient with a Grade II oligodendroglioma. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19365851</pmid><doi>10.1002/mrm.21970</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2009-07, Vol.62 (1), p.17-25
issn 0740-3194
1522-2594
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3675773
source MEDLINE; Wiley Online Library Free Content; Wiley Online Library Journals【Remote access available】
subjects Biomarkers, Tumor - analysis
Brain
Brain - metabolism
Brain Neoplasms - diagnosis
Brain Neoplasms - metabolism
Equipment Design
Equipment Failure Analysis
Glutamic acid
Glutamic Acid - analysis
Head
human brain
Humans
Image Enhancement - instrumentation
Inversion
Lipids
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Spectroscopy - instrumentation
Magnetics - instrumentation
N.M.R
Neuroimaging
oligodendroglioma
Oligodendroglioma - diagnosis
Oligodendroglioma - metabolism
Reproducibility of Results
Sensitivity and Specificity
short echo spectroscopic imaging
transceiver arrays
Transducers
title Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T14%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%20echo%20spectroscopic%20imaging%20of%20the%20human%20brain%20at%207T%20using%20transceiver%20arrays&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Avdievich,%20N.I.&rft.date=2009-07&rft.volume=62&rft.issue=1&rft.spage=17&rft.epage=25&rft.pages=17-25&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.21970&rft_dat=%3Cproquest_pubme%3E883039365%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67437495&rft_id=info:pmid/19365851&rfr_iscdi=true