Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays
Recent advances in magnet technology have enabled the construction of ultrahigh‐field magnets (7T and higher) that can accommodate the human head and body. Despite the intrinsic advantages of performing spectroscopic imaging at 7T, increased signal‐to‐noise ratio (SNR), and spectral resolution, few...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2009-07, Vol.62 (1), p.17-25 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | Magnetic resonance in medicine |
container_volume | 62 |
creator | Avdievich, N.I. Pan, J.W. Baehring, J.M. Spencer, D.D. Hetherington, H.P. |
description | Recent advances in magnet technology have enabled the construction of ultrahigh‐field magnets (7T and higher) that can accommodate the human head and body. Despite the intrinsic advantages of performing spectroscopic imaging at 7T, increased signal‐to‐noise ratio (SNR), and spectral resolution, few studies have been reported to date. This limitation is largely due to increased power deposition and B1 inhomogeneity. To overcome these limitations, we used an 8‐channel transceiver array with a short TE (15 ms) spectroscopic imaging sequence. Utilizing phase and amplitude mapping and optimization schemes, the 8‐element transceiver array provided both improved efficiency (17% less power for equivalent peak B1) and homogeneity (SD(B1) = ±10% versus ±22%) in comparison to a transverse electromagnetic (TEM) volume coil. To minimize the echo time to measure J‐modulating compounds such as glutamate, we developed a short TE sequence utilizing a single‐slice selective excitation pulse followed by a broadband semiselective refocusing pulse. Extracerebral lipid resonances were suppressed with an inversion recovery pulse and delay. The short TE sequence enabled visualization of a variety of resonances, including glutamate, in both a control subject and a patient with a Grade II oligodendroglioma. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/mrm.21970 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3675773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883039365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4830-e91fea0049b32625844952c30d56c70401c02f791ba20c1e3ca740cae76333033</originalsourceid><addsrcrecordid>eNp9kc1uEzEUhS1ERUPLghdAXlGxmPb6bxxvkKqqf1JTqhDE0nJcT8YwM07tmbZ5-zpNKLCAlRf3u0ef70HoPYFDAkCP2tgeUqIkvEIjIigtqFD8NRqB5FAwovguepvSDwBQSvI3aJcoVoqxICM0_VqH2GNn64DT0tk-hmTD0lvsW7Pw3QKHCve1w_XQmg7Po_EdNj2WMzyk9biPpkvW-XsXsYnRrNI-2qlMk9y77buHvp2dzk4uiqsv55cnx1eF5WMGhVOkcgaAqzmjJRVjzpWglsGtKK0EDsQCraQic0PBEsesyd-xxsmSMQaM7aHPm9zlMG_drXVddmn0MmbzuNLBeP33pPO1XoR7zUoppFwHHGwDYrgbXOp16_NXmsZ0LgxJj7MmW18qkx__S5aSM5n1M_hpA9p8xxRd9aJDQK-70rkr_dxVZj_86f-b3JaTgaMN8OAbt_p3kp5MJ78ii82GT717fNkw8WdWZFLo79fnWs2uby4miukpewIHW604</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67437495</pqid></control><display><type>article</type><title>Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Wiley Online Library Journals【Remote access available】</source><creator>Avdievich, N.I. ; Pan, J.W. ; Baehring, J.M. ; Spencer, D.D. ; Hetherington, H.P.</creator><creatorcontrib>Avdievich, N.I. ; Pan, J.W. ; Baehring, J.M. ; Spencer, D.D. ; Hetherington, H.P.</creatorcontrib><description>Recent advances in magnet technology have enabled the construction of ultrahigh‐field magnets (7T and higher) that can accommodate the human head and body. Despite the intrinsic advantages of performing spectroscopic imaging at 7T, increased signal‐to‐noise ratio (SNR), and spectral resolution, few studies have been reported to date. This limitation is largely due to increased power deposition and B1 inhomogeneity. To overcome these limitations, we used an 8‐channel transceiver array with a short TE (15 ms) spectroscopic imaging sequence. Utilizing phase and amplitude mapping and optimization schemes, the 8‐element transceiver array provided both improved efficiency (17% less power for equivalent peak B1) and homogeneity (SD(B1) = ±10% versus ±22%) in comparison to a transverse electromagnetic (TEM) volume coil. To minimize the echo time to measure J‐modulating compounds such as glutamate, we developed a short TE sequence utilizing a single‐slice selective excitation pulse followed by a broadband semiselective refocusing pulse. Extracerebral lipid resonances were suppressed with an inversion recovery pulse and delay. The short TE sequence enabled visualization of a variety of resonances, including glutamate, in both a control subject and a patient with a Grade II oligodendroglioma. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>ISSN: 1522-2594</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.21970</identifier><identifier>PMID: 19365851</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Biomarkers, Tumor - analysis ; Brain ; Brain - metabolism ; Brain Neoplasms - diagnosis ; Brain Neoplasms - metabolism ; Equipment Design ; Equipment Failure Analysis ; Glutamic acid ; Glutamic Acid - analysis ; Head ; human brain ; Humans ; Image Enhancement - instrumentation ; Inversion ; Lipids ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Spectroscopy - instrumentation ; Magnetics - instrumentation ; N.M.R ; Neuroimaging ; oligodendroglioma ; Oligodendroglioma - diagnosis ; Oligodendroglioma - metabolism ; Reproducibility of Results ; Sensitivity and Specificity ; short echo spectroscopic imaging ; transceiver arrays ; Transducers</subject><ispartof>Magnetic resonance in medicine, 2009-07, Vol.62 (1), p.17-25</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><rights>(c) 2009 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4830-e91fea0049b32625844952c30d56c70401c02f791ba20c1e3ca740cae76333033</citedby><cites>FETCH-LOGICAL-c4830-e91fea0049b32625844952c30d56c70401c02f791ba20c1e3ca740cae76333033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.21970$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.21970$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,1435,27933,27934,45583,45584,46418,46842</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19365851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Avdievich, N.I.</creatorcontrib><creatorcontrib>Pan, J.W.</creatorcontrib><creatorcontrib>Baehring, J.M.</creatorcontrib><creatorcontrib>Spencer, D.D.</creatorcontrib><creatorcontrib>Hetherington, H.P.</creatorcontrib><title>Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Recent advances in magnet technology have enabled the construction of ultrahigh‐field magnets (7T and higher) that can accommodate the human head and body. Despite the intrinsic advantages of performing spectroscopic imaging at 7T, increased signal‐to‐noise ratio (SNR), and spectral resolution, few studies have been reported to date. This limitation is largely due to increased power deposition and B1 inhomogeneity. To overcome these limitations, we used an 8‐channel transceiver array with a short TE (15 ms) spectroscopic imaging sequence. Utilizing phase and amplitude mapping and optimization schemes, the 8‐element transceiver array provided both improved efficiency (17% less power for equivalent peak B1) and homogeneity (SD(B1) = ±10% versus ±22%) in comparison to a transverse electromagnetic (TEM) volume coil. To minimize the echo time to measure J‐modulating compounds such as glutamate, we developed a short TE sequence utilizing a single‐slice selective excitation pulse followed by a broadband semiselective refocusing pulse. Extracerebral lipid resonances were suppressed with an inversion recovery pulse and delay. The short TE sequence enabled visualization of a variety of resonances, including glutamate, in both a control subject and a patient with a Grade II oligodendroglioma. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.</description><subject>Biomarkers, Tumor - analysis</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain Neoplasms - diagnosis</subject><subject>Brain Neoplasms - metabolism</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Glutamic acid</subject><subject>Glutamic Acid - analysis</subject><subject>Head</subject><subject>human brain</subject><subject>Humans</subject><subject>Image Enhancement - instrumentation</subject><subject>Inversion</subject><subject>Lipids</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Spectroscopy - instrumentation</subject><subject>Magnetics - instrumentation</subject><subject>N.M.R</subject><subject>Neuroimaging</subject><subject>oligodendroglioma</subject><subject>Oligodendroglioma - diagnosis</subject><subject>Oligodendroglioma - metabolism</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>short echo spectroscopic imaging</subject><subject>transceiver arrays</subject><subject>Transducers</subject><issn>0740-3194</issn><issn>1522-2594</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1uEzEUhS1ERUPLghdAXlGxmPb6bxxvkKqqf1JTqhDE0nJcT8YwM07tmbZ5-zpNKLCAlRf3u0ef70HoPYFDAkCP2tgeUqIkvEIjIigtqFD8NRqB5FAwovguepvSDwBQSvI3aJcoVoqxICM0_VqH2GNn64DT0tk-hmTD0lvsW7Pw3QKHCve1w_XQmg7Po_EdNj2WMzyk9biPpkvW-XsXsYnRrNI-2qlMk9y77buHvp2dzk4uiqsv55cnx1eF5WMGhVOkcgaAqzmjJRVjzpWglsGtKK0EDsQCraQic0PBEsesyd-xxsmSMQaM7aHPm9zlMG_drXVddmn0MmbzuNLBeP33pPO1XoR7zUoppFwHHGwDYrgbXOp16_NXmsZ0LgxJj7MmW18qkx__S5aSM5n1M_hpA9p8xxRd9aJDQK-70rkr_dxVZj_86f-b3JaTgaMN8OAbt_p3kp5MJ78ii82GT717fNkw8WdWZFLo79fnWs2uby4miukpewIHW604</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Avdievich, N.I.</creator><creator>Pan, J.W.</creator><creator>Baehring, J.M.</creator><creator>Spencer, D.D.</creator><creator>Hetherington, H.P.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>200907</creationdate><title>Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays</title><author>Avdievich, N.I. ; Pan, J.W. ; Baehring, J.M. ; Spencer, D.D. ; Hetherington, H.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4830-e91fea0049b32625844952c30d56c70401c02f791ba20c1e3ca740cae76333033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biomarkers, Tumor - analysis</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain Neoplasms - diagnosis</topic><topic>Brain Neoplasms - metabolism</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Glutamic acid</topic><topic>Glutamic Acid - analysis</topic><topic>Head</topic><topic>human brain</topic><topic>Humans</topic><topic>Image Enhancement - instrumentation</topic><topic>Inversion</topic><topic>Lipids</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Spectroscopy - instrumentation</topic><topic>Magnetics - instrumentation</topic><topic>N.M.R</topic><topic>Neuroimaging</topic><topic>oligodendroglioma</topic><topic>Oligodendroglioma - diagnosis</topic><topic>Oligodendroglioma - metabolism</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>short echo spectroscopic imaging</topic><topic>transceiver arrays</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avdievich, N.I.</creatorcontrib><creatorcontrib>Pan, J.W.</creatorcontrib><creatorcontrib>Baehring, J.M.</creatorcontrib><creatorcontrib>Spencer, D.D.</creatorcontrib><creatorcontrib>Hetherington, H.P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avdievich, N.I.</au><au>Pan, J.W.</au><au>Baehring, J.M.</au><au>Spencer, D.D.</au><au>Hetherington, H.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2009-07</date><risdate>2009</risdate><volume>62</volume><issue>1</issue><spage>17</spage><epage>25</epage><pages>17-25</pages><issn>0740-3194</issn><issn>1522-2594</issn><eissn>1522-2594</eissn><abstract>Recent advances in magnet technology have enabled the construction of ultrahigh‐field magnets (7T and higher) that can accommodate the human head and body. Despite the intrinsic advantages of performing spectroscopic imaging at 7T, increased signal‐to‐noise ratio (SNR), and spectral resolution, few studies have been reported to date. This limitation is largely due to increased power deposition and B1 inhomogeneity. To overcome these limitations, we used an 8‐channel transceiver array with a short TE (15 ms) spectroscopic imaging sequence. Utilizing phase and amplitude mapping and optimization schemes, the 8‐element transceiver array provided both improved efficiency (17% less power for equivalent peak B1) and homogeneity (SD(B1) = ±10% versus ±22%) in comparison to a transverse electromagnetic (TEM) volume coil. To minimize the echo time to measure J‐modulating compounds such as glutamate, we developed a short TE sequence utilizing a single‐slice selective excitation pulse followed by a broadband semiselective refocusing pulse. Extracerebral lipid resonances were suppressed with an inversion recovery pulse and delay. The short TE sequence enabled visualization of a variety of resonances, including glutamate, in both a control subject and a patient with a Grade II oligodendroglioma. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19365851</pmid><doi>10.1002/mrm.21970</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2009-07, Vol.62 (1), p.17-25 |
issn | 0740-3194 1522-2594 1522-2594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3675773 |
source | MEDLINE; Wiley Online Library Free Content; Wiley Online Library Journals【Remote access available】 |
subjects | Biomarkers, Tumor - analysis Brain Brain - metabolism Brain Neoplasms - diagnosis Brain Neoplasms - metabolism Equipment Design Equipment Failure Analysis Glutamic acid Glutamic Acid - analysis Head human brain Humans Image Enhancement - instrumentation Inversion Lipids Magnetic Resonance Imaging - instrumentation Magnetic Resonance Spectroscopy - instrumentation Magnetics - instrumentation N.M.R Neuroimaging oligodendroglioma Oligodendroglioma - diagnosis Oligodendroglioma - metabolism Reproducibility of Results Sensitivity and Specificity short echo spectroscopic imaging transceiver arrays Transducers |
title | Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T14%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%20echo%20spectroscopic%20imaging%20of%20the%20human%20brain%20at%207T%20using%20transceiver%20arrays&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Avdievich,%20N.I.&rft.date=2009-07&rft.volume=62&rft.issue=1&rft.spage=17&rft.epage=25&rft.pages=17-25&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.21970&rft_dat=%3Cproquest_pubme%3E883039365%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67437495&rft_id=info:pmid/19365851&rfr_iscdi=true |