Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops
Establishment of cell polarity—or symmetry breaking—relies on local accumulation of polarity regulators. Although simple positive feedback is sufficient to drive symmetry breaking, it is highly sensitive to stochastic fluctuations typical for living cells. Here, by integrating mathematical modelling...
Gespeichert in:
Veröffentlicht in: | Nature communications 2013-05, Vol.4 (1), p.1807, Article 1807 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 1807 |
container_title | Nature communications |
container_volume | 4 |
creator | Freisinger, Tina Klünder, Ben Johnson, Jared Müller, Nikola Pichler, Garwin Beck, Gisela Costanzo, Michael Boone, Charles Cerione, Richard A. Frey, Erwin Wedlich-Söldner, Roland |
description | Establishment of cell polarity—or symmetry breaking—relies on local accumulation of polarity regulators. Although simple positive feedback is sufficient to drive symmetry breaking, it is highly sensitive to stochastic fluctuations typical for living cells. Here, by integrating mathematical modelling with quantitative experimental validations, we show that in the yeast
Saccharomyces cerevisiae
a combination of actin- and guanine nucleotide dissociation inhibitor-dependent recycling of the central polarity regulator Cdc42 is needed to establish robust cell polarity at a single site during yeast budding. The guanine nucleotide dissociation inhibitor pathway consistently generates a single-polarization site, but requires Cdc42 to cycle rapidly between its active and inactive form, and is therefore sensitive to perturbations of the GTPase cycle. Conversely, actin-mediated recycling of Cdc42 induces robust symmetry breaking but cannot restrict polarization to a single site. Our results demonstrate how cells optimize symmetry breaking through coupling between multiple feedback loops.
A positive feedback loop which results in localized accumulation of the small GTPase Cdc42 generates cell polarity in budding yeast; however, such loops are inherently susceptible to noise. Here the authors demonstrate how two pathways that mediate Cdc42 recycling work together to ensure the robustness of symmetry breaking. |
doi_str_mv | 10.1038/ncomms2795 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3674238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2981915861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-9bf337cf4e15f53f448b4a561fbea3e1fbf6943a904fbfaffee9f229f822e6ce3</originalsourceid><addsrcrecordid>eNplkUtLAzEUhYMottRu_AEScKeMTh7zyEaQUh9QcKPrkEmTNjUzGZOZYv-9Ka1aMZt7uffjnBsOAOcovUEpKW8b6eo64IJlR2CIU4oSVGByfNAPwDiEVRofYaik9BQMMMkzxFg2BHIaOlFZE5a1ajroNBTQu6oPHQymWVgFxacJ27lU1sLWWeFNt4HVBkrXtzYysO5tZ9qIti6YzqwV1ErNKyHfoXWuDWfgRAsb1HhfR-DtYfo6eUpmL4_Pk_tZIinFXcIqTUghNVUo0xnRlJYVFVmOdKUEUbHonFEiWEpjK3Q0YRpjpkuMVS4VGYG7nW7bV7Way_ghLyxvvamF33AnDP-7acySL9yak7ygmJRR4HIv4N1Hr0LHV673TbyZI5JlJaNlySJ1taOkdyF4pX8cUMq3mfDfTCJ8cXjTD_qdQASud0CIq2ah_IHnf7kv84Oa9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355894889</pqid></control><display><type>article</type><title>Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops</title><source>MEDLINE</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Freisinger, Tina ; Klünder, Ben ; Johnson, Jared ; Müller, Nikola ; Pichler, Garwin ; Beck, Gisela ; Costanzo, Michael ; Boone, Charles ; Cerione, Richard A. ; Frey, Erwin ; Wedlich-Söldner, Roland</creator><creatorcontrib>Freisinger, Tina ; Klünder, Ben ; Johnson, Jared ; Müller, Nikola ; Pichler, Garwin ; Beck, Gisela ; Costanzo, Michael ; Boone, Charles ; Cerione, Richard A. ; Frey, Erwin ; Wedlich-Söldner, Roland</creatorcontrib><description>Establishment of cell polarity—or symmetry breaking—relies on local accumulation of polarity regulators. Although simple positive feedback is sufficient to drive symmetry breaking, it is highly sensitive to stochastic fluctuations typical for living cells. Here, by integrating mathematical modelling with quantitative experimental validations, we show that in the yeast
Saccharomyces cerevisiae
a combination of actin- and guanine nucleotide dissociation inhibitor-dependent recycling of the central polarity regulator Cdc42 is needed to establish robust cell polarity at a single site during yeast budding. The guanine nucleotide dissociation inhibitor pathway consistently generates a single-polarization site, but requires Cdc42 to cycle rapidly between its active and inactive form, and is therefore sensitive to perturbations of the GTPase cycle. Conversely, actin-mediated recycling of Cdc42 induces robust symmetry breaking but cannot restrict polarization to a single site. Our results demonstrate how cells optimize symmetry breaking through coupling between multiple feedback loops.
A positive feedback loop which results in localized accumulation of the small GTPase Cdc42 generates cell polarity in budding yeast; however, such loops are inherently susceptible to noise. Here the authors demonstrate how two pathways that mediate Cdc42 recycling work together to ensure the robustness of symmetry breaking.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms2795</identifier><identifier>PMID: 23651995</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/80/85 ; 631/80/86 ; Actins - metabolism ; Bridged Bicyclo Compounds, Heterocyclic - pharmacology ; cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - metabolism ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Cell Polarity - drug effects ; Chromosome Segregation - drug effects ; Computer Simulation ; DNA, Fungal - metabolism ; Feedback, Physiological - drug effects ; Fluorescence Resonance Energy Transfer ; Green Fluorescent Proteins - metabolism ; Guanine Nucleotide Dissociation Inhibitors - metabolism ; Guanosine Triphosphate - metabolism ; Humanities and Social Sciences ; Hydrolysis - drug effects ; Models, Biological ; multidisciplinary ; Mutation - genetics ; Reproducibility of Results ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Science ; Science (multidisciplinary) ; Stochastic Processes ; Thiazolidines - pharmacology</subject><ispartof>Nature communications, 2013-05, Vol.4 (1), p.1807, Article 1807</ispartof><rights>The Author(s) 2013</rights><rights>Copyright Nature Publishing Group May 2013</rights><rights>Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2013 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-9bf337cf4e15f53f448b4a561fbea3e1fbf6943a904fbfaffee9f229f822e6ce3</citedby><cites>FETCH-LOGICAL-c442t-9bf337cf4e15f53f448b4a561fbea3e1fbf6943a904fbfaffee9f229f822e6ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674238/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674238/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,41099,42168,51555,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23651995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freisinger, Tina</creatorcontrib><creatorcontrib>Klünder, Ben</creatorcontrib><creatorcontrib>Johnson, Jared</creatorcontrib><creatorcontrib>Müller, Nikola</creatorcontrib><creatorcontrib>Pichler, Garwin</creatorcontrib><creatorcontrib>Beck, Gisela</creatorcontrib><creatorcontrib>Costanzo, Michael</creatorcontrib><creatorcontrib>Boone, Charles</creatorcontrib><creatorcontrib>Cerione, Richard A.</creatorcontrib><creatorcontrib>Frey, Erwin</creatorcontrib><creatorcontrib>Wedlich-Söldner, Roland</creatorcontrib><title>Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Establishment of cell polarity—or symmetry breaking—relies on local accumulation of polarity regulators. Although simple positive feedback is sufficient to drive symmetry breaking, it is highly sensitive to stochastic fluctuations typical for living cells. Here, by integrating mathematical modelling with quantitative experimental validations, we show that in the yeast
Saccharomyces cerevisiae
a combination of actin- and guanine nucleotide dissociation inhibitor-dependent recycling of the central polarity regulator Cdc42 is needed to establish robust cell polarity at a single site during yeast budding. The guanine nucleotide dissociation inhibitor pathway consistently generates a single-polarization site, but requires Cdc42 to cycle rapidly between its active and inactive form, and is therefore sensitive to perturbations of the GTPase cycle. Conversely, actin-mediated recycling of Cdc42 induces robust symmetry breaking but cannot restrict polarization to a single site. Our results demonstrate how cells optimize symmetry breaking through coupling between multiple feedback loops.
A positive feedback loop which results in localized accumulation of the small GTPase Cdc42 generates cell polarity in budding yeast; however, such loops are inherently susceptible to noise. Here the authors demonstrate how two pathways that mediate Cdc42 recycling work together to ensure the robustness of symmetry breaking.</description><subject>631/80/85</subject><subject>631/80/86</subject><subject>Actins - metabolism</subject><subject>Bridged Bicyclo Compounds, Heterocyclic - pharmacology</subject><subject>cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - metabolism</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Polarity - drug effects</subject><subject>Chromosome Segregation - drug effects</subject><subject>Computer Simulation</subject><subject>DNA, Fungal - metabolism</subject><subject>Feedback, Physiological - drug effects</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Guanine Nucleotide Dissociation Inhibitors - metabolism</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Hydrolysis - drug effects</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Mutation - genetics</subject><subject>Reproducibility of Results</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stochastic Processes</subject><subject>Thiazolidines - pharmacology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkUtLAzEUhYMottRu_AEScKeMTh7zyEaQUh9QcKPrkEmTNjUzGZOZYv-9Ka1aMZt7uffjnBsOAOcovUEpKW8b6eo64IJlR2CIU4oSVGByfNAPwDiEVRofYaik9BQMMMkzxFg2BHIaOlFZE5a1ajroNBTQu6oPHQymWVgFxacJ27lU1sLWWeFNt4HVBkrXtzYysO5tZ9qIti6YzqwV1ErNKyHfoXWuDWfgRAsb1HhfR-DtYfo6eUpmL4_Pk_tZIinFXcIqTUghNVUo0xnRlJYVFVmOdKUEUbHonFEiWEpjK3Q0YRpjpkuMVS4VGYG7nW7bV7Way_ghLyxvvamF33AnDP-7acySL9yak7ygmJRR4HIv4N1Hr0LHV673TbyZI5JlJaNlySJ1taOkdyF4pX8cUMq3mfDfTCJ8cXjTD_qdQASud0CIq2ah_IHnf7kv84Oa9Q</recordid><startdate>20130507</startdate><enddate>20130507</enddate><creator>Freisinger, Tina</creator><creator>Klünder, Ben</creator><creator>Johnson, Jared</creator><creator>Müller, Nikola</creator><creator>Pichler, Garwin</creator><creator>Beck, Gisela</creator><creator>Costanzo, Michael</creator><creator>Boone, Charles</creator><creator>Cerione, Richard A.</creator><creator>Frey, Erwin</creator><creator>Wedlich-Söldner, Roland</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20130507</creationdate><title>Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops</title><author>Freisinger, Tina ; Klünder, Ben ; Johnson, Jared ; Müller, Nikola ; Pichler, Garwin ; Beck, Gisela ; Costanzo, Michael ; Boone, Charles ; Cerione, Richard A. ; Frey, Erwin ; Wedlich-Söldner, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-9bf337cf4e15f53f448b4a561fbea3e1fbf6943a904fbfaffee9f229f822e6ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/80/85</topic><topic>631/80/86</topic><topic>Actins - metabolism</topic><topic>Bridged Bicyclo Compounds, Heterocyclic - pharmacology</topic><topic>cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - metabolism</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Polarity - drug effects</topic><topic>Chromosome Segregation - drug effects</topic><topic>Computer Simulation</topic><topic>DNA, Fungal - metabolism</topic><topic>Feedback, Physiological - drug effects</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Guanine Nucleotide Dissociation Inhibitors - metabolism</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Hydrolysis - drug effects</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Mutation - genetics</topic><topic>Reproducibility of Results</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stochastic Processes</topic><topic>Thiazolidines - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freisinger, Tina</creatorcontrib><creatorcontrib>Klünder, Ben</creatorcontrib><creatorcontrib>Johnson, Jared</creatorcontrib><creatorcontrib>Müller, Nikola</creatorcontrib><creatorcontrib>Pichler, Garwin</creatorcontrib><creatorcontrib>Beck, Gisela</creatorcontrib><creatorcontrib>Costanzo, Michael</creatorcontrib><creatorcontrib>Boone, Charles</creatorcontrib><creatorcontrib>Cerione, Richard A.</creatorcontrib><creatorcontrib>Frey, Erwin</creatorcontrib><creatorcontrib>Wedlich-Söldner, Roland</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freisinger, Tina</au><au>Klünder, Ben</au><au>Johnson, Jared</au><au>Müller, Nikola</au><au>Pichler, Garwin</au><au>Beck, Gisela</au><au>Costanzo, Michael</au><au>Boone, Charles</au><au>Cerione, Richard A.</au><au>Frey, Erwin</au><au>Wedlich-Söldner, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2013-05-07</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>1807</spage><pages>1807-</pages><artnum>1807</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Establishment of cell polarity—or symmetry breaking—relies on local accumulation of polarity regulators. Although simple positive feedback is sufficient to drive symmetry breaking, it is highly sensitive to stochastic fluctuations typical for living cells. Here, by integrating mathematical modelling with quantitative experimental validations, we show that in the yeast
Saccharomyces cerevisiae
a combination of actin- and guanine nucleotide dissociation inhibitor-dependent recycling of the central polarity regulator Cdc42 is needed to establish robust cell polarity at a single site during yeast budding. The guanine nucleotide dissociation inhibitor pathway consistently generates a single-polarization site, but requires Cdc42 to cycle rapidly between its active and inactive form, and is therefore sensitive to perturbations of the GTPase cycle. Conversely, actin-mediated recycling of Cdc42 induces robust symmetry breaking but cannot restrict polarization to a single site. Our results demonstrate how cells optimize symmetry breaking through coupling between multiple feedback loops.
A positive feedback loop which results in localized accumulation of the small GTPase Cdc42 generates cell polarity in budding yeast; however, such loops are inherently susceptible to noise. Here the authors demonstrate how two pathways that mediate Cdc42 recycling work together to ensure the robustness of symmetry breaking.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23651995</pmid><doi>10.1038/ncomms2795</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2013-05, Vol.4 (1), p.1807, Article 1807 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3674238 |
source | MEDLINE; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 631/80/85 631/80/86 Actins - metabolism Bridged Bicyclo Compounds, Heterocyclic - pharmacology cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - metabolism Cell Nucleus - drug effects Cell Nucleus - metabolism Cell Polarity - drug effects Chromosome Segregation - drug effects Computer Simulation DNA, Fungal - metabolism Feedback, Physiological - drug effects Fluorescence Resonance Energy Transfer Green Fluorescent Proteins - metabolism Guanine Nucleotide Dissociation Inhibitors - metabolism Guanosine Triphosphate - metabolism Humanities and Social Sciences Hydrolysis - drug effects Models, Biological multidisciplinary Mutation - genetics Reproducibility of Results Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Science Science (multidisciplinary) Stochastic Processes Thiazolidines - pharmacology |
title | Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishment%20of%20a%20robust%20single%20axis%20of%20cell%20polarity%20by%20coupling%20multiple%20positive%20feedback%20loops&rft.jtitle=Nature%20communications&rft.au=Freisinger,%20Tina&rft.date=2013-05-07&rft.volume=4&rft.issue=1&rft.spage=1807&rft.pages=1807-&rft.artnum=1807&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms2795&rft_dat=%3Cproquest_pubme%3E2981915861%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1355894889&rft_id=info:pmid/23651995&rfr_iscdi=true |