Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis
In this work, we apply a novel statistical method, multiset canonical correlation analysis (M-CCA), to study a group of functional magnetic resonance imaging (fMRI) datasets acquired during simulated driving task. The M-CCA method jointly decomposes fMRI datasets from different subjects/sessions int...
Gespeichert in:
Veröffentlicht in: | Journal of signal processing systems 2012-07, Vol.68 (1), p.31-48 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | Journal of signal processing systems |
container_volume | 68 |
creator | Li, Yi-Ou Eichele, Tom Calhoun, Vince D. Adali, Tulay |
description | In this work, we apply a novel statistical method, multiset canonical correlation analysis (M-CCA), to study a group of functional magnetic resonance imaging (fMRI) datasets acquired during simulated driving task. The M-CCA method jointly decomposes fMRI datasets from different subjects/sessions into brain activation maps and their associated time courses, such that the correlation in each group of estimated activation maps across datasets is maximized. Therefore, the functional activations across all datasets are extracted in the order of consistency across different dataset. On the other hand, M-CCA preserves the uniqueness of the functional maps estimated from each dataset by avoiding concatenation of different datasets in the analysis. Hence, the cross-dataset variation of the functional activations can be used to test the hypothesis of functional-behavioral association. In this work, we study 120 simulated driving fMRI datasets and identify parietal-occipital regions and frontal lobe as the most consistently engaged areas across all the subjects and sessions during simulated driving. The functional-behavioral association study indicates that all the estimated brain activations are significantly correlated with the steering operation during the driving task. M-CCA thus provides a new approach to investigate the complex relationship between the brain functions and multiple behavioral variables, especially in naturalistic tasks as demonstrated by the simulated driving study. |
doi_str_mv | 10.1007/s11265-010-0572-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3673747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826571154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-c0ec8c9471ad0f69c3fc44b5d0c748b5d1a3f80437991358c39d993e30b801f13</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhS1EBZTyA7ggH7mEzsRObF8qoaVQJFZIUM6W13EWo6y9tROk_fc1Wli1l_Y0lua9J8_7CDlFuEAA8TUj1m1TAUIFjagruUeOUDFVScRm_-MNKA_J55xfAFoQDR6Qw5qJBmoFR-TpJsVpTR_HqdvQ2NNHv5oGM7qOXiX_6sOS9vOHW3plRkMXGzqfhtFnN9KZCTF4awY6iym5YvEx0Mtghk32-Qv51Jshu5P3eUyerr__nP2o7u5vbmeXd5XlohkrC85Kq7hA00HfKst6y_mi6cAKLstEw3oJnAmlkDXSMtUpxRyDRbmqR3ZMvm1z19Ni5TrrwpjMoNfJr0za6Gi8_nsT_LNexlfNWsEEFyXg_D0gxV-Ty6Ne-WzdMJjg4pQ1ylKwKG3y_0uBIeO8xbpIcSu1KeacXL_7EYJ-I6e35HQhp9_IaVk8Z3-esnN8oCqCeivIZRWWLumXOKVSeP5H6m9JUKOm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031344612</pqid></control><display><type>article</type><title>Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis</title><source>SpringerLink Journals</source><creator>Li, Yi-Ou ; Eichele, Tom ; Calhoun, Vince D. ; Adali, Tulay</creator><creatorcontrib>Li, Yi-Ou ; Eichele, Tom ; Calhoun, Vince D. ; Adali, Tulay</creatorcontrib><description>In this work, we apply a novel statistical method, multiset canonical correlation analysis (M-CCA), to study a group of functional magnetic resonance imaging (fMRI) datasets acquired during simulated driving task. The M-CCA method jointly decomposes fMRI datasets from different subjects/sessions into brain activation maps and their associated time courses, such that the correlation in each group of estimated activation maps across datasets is maximized. Therefore, the functional activations across all datasets are extracted in the order of consistency across different dataset. On the other hand, M-CCA preserves the uniqueness of the functional maps estimated from each dataset by avoiding concatenation of different datasets in the analysis. Hence, the cross-dataset variation of the functional activations can be used to test the hypothesis of functional-behavioral association. In this work, we study 120 simulated driving fMRI datasets and identify parietal-occipital regions and frontal lobe as the most consistently engaged areas across all the subjects and sessions during simulated driving. The functional-behavioral association study indicates that all the estimated brain activations are significantly correlated with the steering operation during the driving task. M-CCA thus provides a new approach to investigate the complex relationship between the brain functions and multiple behavioral variables, especially in naturalistic tasks as demonstrated by the simulated driving study.</description><identifier>ISSN: 1939-8018</identifier><identifier>EISSN: 1939-8115</identifier><identifier>DOI: 10.1007/s11265-010-0572-8</identifier><identifier>PMID: 23750290</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Activation ; Brain ; Circuits and Systems ; Computer Imaging ; Correlation analysis ; Driving ; Electrical Engineering ; Engineering ; Image Processing and Computer Vision ; Pattern Recognition ; Pattern Recognition and Graphics ; Signal,Image and Speech Processing ; Simulation ; Tasks ; Vision</subject><ispartof>Journal of signal processing systems, 2012-07, Vol.68 (1), p.31-48</ispartof><rights>The Author(s) 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-c0ec8c9471ad0f69c3fc44b5d0c748b5d1a3f80437991358c39d993e30b801f13</citedby><cites>FETCH-LOGICAL-c475t-c0ec8c9471ad0f69c3fc44b5d0c748b5d1a3f80437991358c39d993e30b801f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11265-010-0572-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11265-010-0572-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23750290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yi-Ou</creatorcontrib><creatorcontrib>Eichele, Tom</creatorcontrib><creatorcontrib>Calhoun, Vince D.</creatorcontrib><creatorcontrib>Adali, Tulay</creatorcontrib><title>Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis</title><title>Journal of signal processing systems</title><addtitle>J Sign Process Syst</addtitle><addtitle>J Signal Process Syst</addtitle><description>In this work, we apply a novel statistical method, multiset canonical correlation analysis (M-CCA), to study a group of functional magnetic resonance imaging (fMRI) datasets acquired during simulated driving task. The M-CCA method jointly decomposes fMRI datasets from different subjects/sessions into brain activation maps and their associated time courses, such that the correlation in each group of estimated activation maps across datasets is maximized. Therefore, the functional activations across all datasets are extracted in the order of consistency across different dataset. On the other hand, M-CCA preserves the uniqueness of the functional maps estimated from each dataset by avoiding concatenation of different datasets in the analysis. Hence, the cross-dataset variation of the functional activations can be used to test the hypothesis of functional-behavioral association. In this work, we study 120 simulated driving fMRI datasets and identify parietal-occipital regions and frontal lobe as the most consistently engaged areas across all the subjects and sessions during simulated driving. The functional-behavioral association study indicates that all the estimated brain activations are significantly correlated with the steering operation during the driving task. M-CCA thus provides a new approach to investigate the complex relationship between the brain functions and multiple behavioral variables, especially in naturalistic tasks as demonstrated by the simulated driving study.</description><subject>Activation</subject><subject>Brain</subject><subject>Circuits and Systems</subject><subject>Computer Imaging</subject><subject>Correlation analysis</subject><subject>Driving</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Image Processing and Computer Vision</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Signal,Image and Speech Processing</subject><subject>Simulation</subject><subject>Tasks</subject><subject>Vision</subject><issn>1939-8018</issn><issn>1939-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNqFkUFP3DAQhS1EBZTyA7ggH7mEzsRObF8qoaVQJFZIUM6W13EWo6y9tROk_fc1Wli1l_Y0lua9J8_7CDlFuEAA8TUj1m1TAUIFjagruUeOUDFVScRm_-MNKA_J55xfAFoQDR6Qw5qJBmoFR-TpJsVpTR_HqdvQ2NNHv5oGM7qOXiX_6sOS9vOHW3plRkMXGzqfhtFnN9KZCTF4awY6iym5YvEx0Mtghk32-Qv51Jshu5P3eUyerr__nP2o7u5vbmeXd5XlohkrC85Kq7hA00HfKst6y_mi6cAKLstEw3oJnAmlkDXSMtUpxRyDRbmqR3ZMvm1z19Ni5TrrwpjMoNfJr0za6Gi8_nsT_LNexlfNWsEEFyXg_D0gxV-Ty6Ne-WzdMJjg4pQ1ylKwKG3y_0uBIeO8xbpIcSu1KeacXL_7EYJ-I6e35HQhp9_IaVk8Z3-esnN8oCqCeivIZRWWLumXOKVSeP5H6m9JUKOm</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Li, Yi-Ou</creator><creator>Eichele, Tom</creator><creator>Calhoun, Vince D.</creator><creator>Adali, Tulay</creator><general>Springer US</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120701</creationdate><title>Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis</title><author>Li, Yi-Ou ; Eichele, Tom ; Calhoun, Vince D. ; Adali, Tulay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-c0ec8c9471ad0f69c3fc44b5d0c748b5d1a3f80437991358c39d993e30b801f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activation</topic><topic>Brain</topic><topic>Circuits and Systems</topic><topic>Computer Imaging</topic><topic>Correlation analysis</topic><topic>Driving</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Image Processing and Computer Vision</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Signal,Image and Speech Processing</topic><topic>Simulation</topic><topic>Tasks</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yi-Ou</creatorcontrib><creatorcontrib>Eichele, Tom</creatorcontrib><creatorcontrib>Calhoun, Vince D.</creatorcontrib><creatorcontrib>Adali, Tulay</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of signal processing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yi-Ou</au><au>Eichele, Tom</au><au>Calhoun, Vince D.</au><au>Adali, Tulay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis</atitle><jtitle>Journal of signal processing systems</jtitle><stitle>J Sign Process Syst</stitle><addtitle>J Signal Process Syst</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>68</volume><issue>1</issue><spage>31</spage><epage>48</epage><pages>31-48</pages><issn>1939-8018</issn><eissn>1939-8115</eissn><abstract>In this work, we apply a novel statistical method, multiset canonical correlation analysis (M-CCA), to study a group of functional magnetic resonance imaging (fMRI) datasets acquired during simulated driving task. The M-CCA method jointly decomposes fMRI datasets from different subjects/sessions into brain activation maps and their associated time courses, such that the correlation in each group of estimated activation maps across datasets is maximized. Therefore, the functional activations across all datasets are extracted in the order of consistency across different dataset. On the other hand, M-CCA preserves the uniqueness of the functional maps estimated from each dataset by avoiding concatenation of different datasets in the analysis. Hence, the cross-dataset variation of the functional activations can be used to test the hypothesis of functional-behavioral association. In this work, we study 120 simulated driving fMRI datasets and identify parietal-occipital regions and frontal lobe as the most consistently engaged areas across all the subjects and sessions during simulated driving. The functional-behavioral association study indicates that all the estimated brain activations are significantly correlated with the steering operation during the driving task. M-CCA thus provides a new approach to investigate the complex relationship between the brain functions and multiple behavioral variables, especially in naturalistic tasks as demonstrated by the simulated driving study.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>23750290</pmid><doi>10.1007/s11265-010-0572-8</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-8018 |
ispartof | Journal of signal processing systems, 2012-07, Vol.68 (1), p.31-48 |
issn | 1939-8018 1939-8115 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3673747 |
source | SpringerLink Journals |
subjects | Activation Brain Circuits and Systems Computer Imaging Correlation analysis Driving Electrical Engineering Engineering Image Processing and Computer Vision Pattern Recognition Pattern Recognition and Graphics Signal,Image and Speech Processing Simulation Tasks Vision |
title | Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20Study%20of%20Simulated%20Driving%20fMRI%20Data%20by%20Multiset%20Canonical%20Correlation%20Analysis&rft.jtitle=Journal%20of%20signal%20processing%20systems&rft.au=Li,%20Yi-Ou&rft.date=2012-07-01&rft.volume=68&rft.issue=1&rft.spage=31&rft.epage=48&rft.pages=31-48&rft.issn=1939-8018&rft.eissn=1939-8115&rft_id=info:doi/10.1007/s11265-010-0572-8&rft_dat=%3Cproquest_pubme%3E1826571154%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031344612&rft_id=info:pmid/23750290&rfr_iscdi=true |