Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis

In this work, we apply a novel statistical method, multiset canonical correlation analysis (M-CCA), to study a group of functional magnetic resonance imaging (fMRI) datasets acquired during simulated driving task. The M-CCA method jointly decomposes fMRI datasets from different subjects/sessions int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of signal processing systems 2012-07, Vol.68 (1), p.31-48
Hauptverfasser: Li, Yi-Ou, Eichele, Tom, Calhoun, Vince D., Adali, Tulay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 31
container_title Journal of signal processing systems
container_volume 68
creator Li, Yi-Ou
Eichele, Tom
Calhoun, Vince D.
Adali, Tulay
description In this work, we apply a novel statistical method, multiset canonical correlation analysis (M-CCA), to study a group of functional magnetic resonance imaging (fMRI) datasets acquired during simulated driving task. The M-CCA method jointly decomposes fMRI datasets from different subjects/sessions into brain activation maps and their associated time courses, such that the correlation in each group of estimated activation maps across datasets is maximized. Therefore, the functional activations across all datasets are extracted in the order of consistency across different dataset. On the other hand, M-CCA preserves the uniqueness of the functional maps estimated from each dataset by avoiding concatenation of different datasets in the analysis. Hence, the cross-dataset variation of the functional activations can be used to test the hypothesis of functional-behavioral association. In this work, we study 120 simulated driving fMRI datasets and identify parietal-occipital regions and frontal lobe as the most consistently engaged areas across all the subjects and sessions during simulated driving. The functional-behavioral association study indicates that all the estimated brain activations are significantly correlated with the steering operation during the driving task. M-CCA thus provides a new approach to investigate the complex relationship between the brain functions and multiple behavioral variables, especially in naturalistic tasks as demonstrated by the simulated driving study.
doi_str_mv 10.1007/s11265-010-0572-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3673747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826571154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-c0ec8c9471ad0f69c3fc44b5d0c748b5d1a3f80437991358c39d993e30b801f13</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhS1EBZTyA7ggH7mEzsRObF8qoaVQJFZIUM6W13EWo6y9tROk_fc1Wli1l_Y0lua9J8_7CDlFuEAA8TUj1m1TAUIFjagruUeOUDFVScRm_-MNKA_J55xfAFoQDR6Qw5qJBmoFR-TpJsVpTR_HqdvQ2NNHv5oGM7qOXiX_6sOS9vOHW3plRkMXGzqfhtFnN9KZCTF4awY6iym5YvEx0Mtghk32-Qv51Jshu5P3eUyerr__nP2o7u5vbmeXd5XlohkrC85Kq7hA00HfKst6y_mi6cAKLstEw3oJnAmlkDXSMtUpxRyDRbmqR3ZMvm1z19Ni5TrrwpjMoNfJr0za6Gi8_nsT_LNexlfNWsEEFyXg_D0gxV-Ty6Ne-WzdMJjg4pQ1ylKwKG3y_0uBIeO8xbpIcSu1KeacXL_7EYJ-I6e35HQhp9_IaVk8Z3-esnN8oCqCeivIZRWWLumXOKVSeP5H6m9JUKOm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031344612</pqid></control><display><type>article</type><title>Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis</title><source>SpringerLink Journals</source><creator>Li, Yi-Ou ; Eichele, Tom ; Calhoun, Vince D. ; Adali, Tulay</creator><creatorcontrib>Li, Yi-Ou ; Eichele, Tom ; Calhoun, Vince D. ; Adali, Tulay</creatorcontrib><description>In this work, we apply a novel statistical method, multiset canonical correlation analysis (M-CCA), to study a group of functional magnetic resonance imaging (fMRI) datasets acquired during simulated driving task. The M-CCA method jointly decomposes fMRI datasets from different subjects/sessions into brain activation maps and their associated time courses, such that the correlation in each group of estimated activation maps across datasets is maximized. Therefore, the functional activations across all datasets are extracted in the order of consistency across different dataset. On the other hand, M-CCA preserves the uniqueness of the functional maps estimated from each dataset by avoiding concatenation of different datasets in the analysis. Hence, the cross-dataset variation of the functional activations can be used to test the hypothesis of functional-behavioral association. In this work, we study 120 simulated driving fMRI datasets and identify parietal-occipital regions and frontal lobe as the most consistently engaged areas across all the subjects and sessions during simulated driving. The functional-behavioral association study indicates that all the estimated brain activations are significantly correlated with the steering operation during the driving task. M-CCA thus provides a new approach to investigate the complex relationship between the brain functions and multiple behavioral variables, especially in naturalistic tasks as demonstrated by the simulated driving study.</description><identifier>ISSN: 1939-8018</identifier><identifier>EISSN: 1939-8115</identifier><identifier>DOI: 10.1007/s11265-010-0572-8</identifier><identifier>PMID: 23750290</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Activation ; Brain ; Circuits and Systems ; Computer Imaging ; Correlation analysis ; Driving ; Electrical Engineering ; Engineering ; Image Processing and Computer Vision ; Pattern Recognition ; Pattern Recognition and Graphics ; Signal,Image and Speech Processing ; Simulation ; Tasks ; Vision</subject><ispartof>Journal of signal processing systems, 2012-07, Vol.68 (1), p.31-48</ispartof><rights>The Author(s) 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-c0ec8c9471ad0f69c3fc44b5d0c748b5d1a3f80437991358c39d993e30b801f13</citedby><cites>FETCH-LOGICAL-c475t-c0ec8c9471ad0f69c3fc44b5d0c748b5d1a3f80437991358c39d993e30b801f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11265-010-0572-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11265-010-0572-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23750290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yi-Ou</creatorcontrib><creatorcontrib>Eichele, Tom</creatorcontrib><creatorcontrib>Calhoun, Vince D.</creatorcontrib><creatorcontrib>Adali, Tulay</creatorcontrib><title>Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis</title><title>Journal of signal processing systems</title><addtitle>J Sign Process Syst</addtitle><addtitle>J Signal Process Syst</addtitle><description>In this work, we apply a novel statistical method, multiset canonical correlation analysis (M-CCA), to study a group of functional magnetic resonance imaging (fMRI) datasets acquired during simulated driving task. The M-CCA method jointly decomposes fMRI datasets from different subjects/sessions into brain activation maps and their associated time courses, such that the correlation in each group of estimated activation maps across datasets is maximized. Therefore, the functional activations across all datasets are extracted in the order of consistency across different dataset. On the other hand, M-CCA preserves the uniqueness of the functional maps estimated from each dataset by avoiding concatenation of different datasets in the analysis. Hence, the cross-dataset variation of the functional activations can be used to test the hypothesis of functional-behavioral association. In this work, we study 120 simulated driving fMRI datasets and identify parietal-occipital regions and frontal lobe as the most consistently engaged areas across all the subjects and sessions during simulated driving. The functional-behavioral association study indicates that all the estimated brain activations are significantly correlated with the steering operation during the driving task. M-CCA thus provides a new approach to investigate the complex relationship between the brain functions and multiple behavioral variables, especially in naturalistic tasks as demonstrated by the simulated driving study.</description><subject>Activation</subject><subject>Brain</subject><subject>Circuits and Systems</subject><subject>Computer Imaging</subject><subject>Correlation analysis</subject><subject>Driving</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Image Processing and Computer Vision</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Signal,Image and Speech Processing</subject><subject>Simulation</subject><subject>Tasks</subject><subject>Vision</subject><issn>1939-8018</issn><issn>1939-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNqFkUFP3DAQhS1EBZTyA7ggH7mEzsRObF8qoaVQJFZIUM6W13EWo6y9tROk_fc1Wli1l_Y0lua9J8_7CDlFuEAA8TUj1m1TAUIFjagruUeOUDFVScRm_-MNKA_J55xfAFoQDR6Qw5qJBmoFR-TpJsVpTR_HqdvQ2NNHv5oGM7qOXiX_6sOS9vOHW3plRkMXGzqfhtFnN9KZCTF4awY6iym5YvEx0Mtghk32-Qv51Jshu5P3eUyerr__nP2o7u5vbmeXd5XlohkrC85Kq7hA00HfKst6y_mi6cAKLstEw3oJnAmlkDXSMtUpxRyDRbmqR3ZMvm1z19Ni5TrrwpjMoNfJr0za6Gi8_nsT_LNexlfNWsEEFyXg_D0gxV-Ty6Ne-WzdMJjg4pQ1ylKwKG3y_0uBIeO8xbpIcSu1KeacXL_7EYJ-I6e35HQhp9_IaVk8Z3-esnN8oCqCeivIZRWWLumXOKVSeP5H6m9JUKOm</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Li, Yi-Ou</creator><creator>Eichele, Tom</creator><creator>Calhoun, Vince D.</creator><creator>Adali, Tulay</creator><general>Springer US</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120701</creationdate><title>Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis</title><author>Li, Yi-Ou ; Eichele, Tom ; Calhoun, Vince D. ; Adali, Tulay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-c0ec8c9471ad0f69c3fc44b5d0c748b5d1a3f80437991358c39d993e30b801f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activation</topic><topic>Brain</topic><topic>Circuits and Systems</topic><topic>Computer Imaging</topic><topic>Correlation analysis</topic><topic>Driving</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Image Processing and Computer Vision</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Signal,Image and Speech Processing</topic><topic>Simulation</topic><topic>Tasks</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yi-Ou</creatorcontrib><creatorcontrib>Eichele, Tom</creatorcontrib><creatorcontrib>Calhoun, Vince D.</creatorcontrib><creatorcontrib>Adali, Tulay</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of signal processing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yi-Ou</au><au>Eichele, Tom</au><au>Calhoun, Vince D.</au><au>Adali, Tulay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis</atitle><jtitle>Journal of signal processing systems</jtitle><stitle>J Sign Process Syst</stitle><addtitle>J Signal Process Syst</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>68</volume><issue>1</issue><spage>31</spage><epage>48</epage><pages>31-48</pages><issn>1939-8018</issn><eissn>1939-8115</eissn><abstract>In this work, we apply a novel statistical method, multiset canonical correlation analysis (M-CCA), to study a group of functional magnetic resonance imaging (fMRI) datasets acquired during simulated driving task. The M-CCA method jointly decomposes fMRI datasets from different subjects/sessions into brain activation maps and their associated time courses, such that the correlation in each group of estimated activation maps across datasets is maximized. Therefore, the functional activations across all datasets are extracted in the order of consistency across different dataset. On the other hand, M-CCA preserves the uniqueness of the functional maps estimated from each dataset by avoiding concatenation of different datasets in the analysis. Hence, the cross-dataset variation of the functional activations can be used to test the hypothesis of functional-behavioral association. In this work, we study 120 simulated driving fMRI datasets and identify parietal-occipital regions and frontal lobe as the most consistently engaged areas across all the subjects and sessions during simulated driving. The functional-behavioral association study indicates that all the estimated brain activations are significantly correlated with the steering operation during the driving task. M-CCA thus provides a new approach to investigate the complex relationship between the brain functions and multiple behavioral variables, especially in naturalistic tasks as demonstrated by the simulated driving study.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>23750290</pmid><doi>10.1007/s11265-010-0572-8</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-8018
ispartof Journal of signal processing systems, 2012-07, Vol.68 (1), p.31-48
issn 1939-8018
1939-8115
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3673747
source SpringerLink Journals
subjects Activation
Brain
Circuits and Systems
Computer Imaging
Correlation analysis
Driving
Electrical Engineering
Engineering
Image Processing and Computer Vision
Pattern Recognition
Pattern Recognition and Graphics
Signal,Image and Speech Processing
Simulation
Tasks
Vision
title Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20Study%20of%20Simulated%20Driving%20fMRI%20Data%20by%20Multiset%20Canonical%20Correlation%20Analysis&rft.jtitle=Journal%20of%20signal%20processing%20systems&rft.au=Li,%20Yi-Ou&rft.date=2012-07-01&rft.volume=68&rft.issue=1&rft.spage=31&rft.epage=48&rft.pages=31-48&rft.issn=1939-8018&rft.eissn=1939-8115&rft_id=info:doi/10.1007/s11265-010-0572-8&rft_dat=%3Cproquest_pubme%3E1826571154%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031344612&rft_id=info:pmid/23750290&rfr_iscdi=true