Quantifying variances in comparative RNA secondary structure prediction
With the advancement of next-generation sequencing and transcriptomics technologies, regulatory effects involving RNA, in particular RNA structural changes are being detected. These results often rely on RNA secondary structure predictions. However, current approaches to RNA secondary structure mode...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2013-05, Vol.14 (1), p.149-149, Article 149 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149 |
---|---|
container_issue | 1 |
container_start_page | 149 |
container_title | BMC bioinformatics |
container_volume | 14 |
creator | Anderson, James W J Novák, Ádám Sükösd, Zsuzsanna Golden, Michael Arunapuram, Preeti Edvardsson, Ingolfur Hein, Jotun |
description | With the advancement of next-generation sequencing and transcriptomics technologies, regulatory effects involving RNA, in particular RNA structural changes are being detected. These results often rely on RNA secondary structure predictions. However, current approaches to RNA secondary structure modelling produce predictions with a high variance in predictive accuracy, and we have little quantifiable knowledge about the reasons for these variances.
In this paper we explore a number of factors which can contribute to poor RNA secondary structure prediction quality. We establish a quantified relationship between alignment quality and loss of accuracy. Furthermore, we define two new measures to quantify uncertainty in alignment-based structure predictions. One of the measures improves on the "reliability score" reported by PPfold, and considers alignment uncertainty as well as base-pair probabilities. The other measure considers the information entropy for SCFGs over a space of input alignments.
Our predictive accuracy improves on the PPfold reliability score. We can successfully characterize many of the underlying reasons for and variances in poor prediction. However, there is still variability unaccounted for, which we therefore suggest comes from the RNA secondary structure predictive model itself. |
doi_str_mv | 10.1186/1471-2105-14-149 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3667108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534515567</galeid><sourcerecordid>A534515567</sourcerecordid><originalsourceid>FETCH-LOGICAL-b618t-fa2693d0116100d48e98ec866eda7a505a6f2d46c28d65cf0a0ebf5a21e049ca3</originalsourceid><addsrcrecordid>eNqNktFrFDEQxhdRbK2--yQLvtiHrZnsJrv7IhyHrYWiWPU5zGVnz5Td5Eyyh_3vzXH17EoFyUBC5jcfwzeTZS-BnQE08i1UNRQcmCigStE-yo4PX4_vvY-yZyHcMAZ1w8TT7IiXsqyk5MfZxecJbTT9rbHrfIveoNUUcmNz7cYNeoxmS_n1x0UeSDvbob_NQ_STjpOnfOOpMzoaZ59nT3ocAr24u0-yb-fvvy4_FFefLi6Xi6tiJaGJRY9ctmXHACQw1lUNtQ3pRkrqsEbBBMqed5XUvOmk0D1DRqteIAdiVauxPMne7XU302qkTpONHge18WZMrSmHRs0z1nxXa7dVpZQ1sCYJLPcCK-P-ITDPJB_Uzki1MzK9UrRJ5c1dG979mChENZqgaRjQkpuCgrLmTLTAy_9ARZ0UeSsS-vov9MZN3iY_EyU5VI1oqz_UGgdSxvYu9al3omohykqAELJO1NkDVDodjSZNknqT_mcFp7OCxET6Gdc4haAuv1zPWbZntXcheOoP_gFTu818yLFX9wd3KPi9iuUvZC3cfA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1362148594</pqid></control><display><type>article</type><title>Quantifying variances in comparative RNA secondary structure prediction</title><source>PubMed (Medline)</source><source>Springer Open Access</source><source>MEDLINE</source><source>SpringerLink (Online service)</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Anderson, James W J ; Novák, Ádám ; Sükösd, Zsuzsanna ; Golden, Michael ; Arunapuram, Preeti ; Edvardsson, Ingolfur ; Hein, Jotun</creator><creatorcontrib>Anderson, James W J ; Novák, Ádám ; Sükösd, Zsuzsanna ; Golden, Michael ; Arunapuram, Preeti ; Edvardsson, Ingolfur ; Hein, Jotun</creatorcontrib><description>With the advancement of next-generation sequencing and transcriptomics technologies, regulatory effects involving RNA, in particular RNA structural changes are being detected. These results often rely on RNA secondary structure predictions. However, current approaches to RNA secondary structure modelling produce predictions with a high variance in predictive accuracy, and we have little quantifiable knowledge about the reasons for these variances.
In this paper we explore a number of factors which can contribute to poor RNA secondary structure prediction quality. We establish a quantified relationship between alignment quality and loss of accuracy. Furthermore, we define two new measures to quantify uncertainty in alignment-based structure predictions. One of the measures improves on the "reliability score" reported by PPfold, and considers alignment uncertainty as well as base-pair probabilities. The other measure considers the information entropy for SCFGs over a space of input alignments.
Our predictive accuracy improves on the PPfold reliability score. We can successfully characterize many of the underlying reasons for and variances in poor prediction. However, there is still variability unaccounted for, which we therefore suggest comes from the RNA secondary structure predictive model itself.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-14-149</identifier><identifier>PMID: 23634662</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Base Pairing ; Bioinformatics ; Eukaryotes ; Evolution, Molecular ; Gene expression ; Genetics ; Genomics ; Methods ; Nucleic Acid Conformation ; Physiological aspects ; Probability ; Protein structure prediction ; Reproducibility of Results ; Ribonucleic acid ; RNA ; RNA - chemistry ; Sequence Alignment - methods ; Sequence Alignment - standards ; Sequence Analysis, RNA</subject><ispartof>BMC bioinformatics, 2013-05, Vol.14 (1), p.149-149, Article 149</ispartof><rights>COPYRIGHT 2013 BioMed Central Ltd.</rights><rights>2013 Anderson et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2013 Anderson et al.; licensee BioMed Central Ltd. 2013 Anderson et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b618t-fa2693d0116100d48e98ec866eda7a505a6f2d46c28d65cf0a0ebf5a21e049ca3</citedby><cites>FETCH-LOGICAL-b618t-fa2693d0116100d48e98ec866eda7a505a6f2d46c28d65cf0a0ebf5a21e049ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667108/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667108/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23634662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, James W J</creatorcontrib><creatorcontrib>Novák, Ádám</creatorcontrib><creatorcontrib>Sükösd, Zsuzsanna</creatorcontrib><creatorcontrib>Golden, Michael</creatorcontrib><creatorcontrib>Arunapuram, Preeti</creatorcontrib><creatorcontrib>Edvardsson, Ingolfur</creatorcontrib><creatorcontrib>Hein, Jotun</creatorcontrib><title>Quantifying variances in comparative RNA secondary structure prediction</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>With the advancement of next-generation sequencing and transcriptomics technologies, regulatory effects involving RNA, in particular RNA structural changes are being detected. These results often rely on RNA secondary structure predictions. However, current approaches to RNA secondary structure modelling produce predictions with a high variance in predictive accuracy, and we have little quantifiable knowledge about the reasons for these variances.
In this paper we explore a number of factors which can contribute to poor RNA secondary structure prediction quality. We establish a quantified relationship between alignment quality and loss of accuracy. Furthermore, we define two new measures to quantify uncertainty in alignment-based structure predictions. One of the measures improves on the "reliability score" reported by PPfold, and considers alignment uncertainty as well as base-pair probabilities. The other measure considers the information entropy for SCFGs over a space of input alignments.
Our predictive accuracy improves on the PPfold reliability score. We can successfully characterize many of the underlying reasons for and variances in poor prediction. However, there is still variability unaccounted for, which we therefore suggest comes from the RNA secondary structure predictive model itself.</description><subject>Algorithms</subject><subject>Base Pairing</subject><subject>Bioinformatics</subject><subject>Eukaryotes</subject><subject>Evolution, Molecular</subject><subject>Gene expression</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Methods</subject><subject>Nucleic Acid Conformation</subject><subject>Physiological aspects</subject><subject>Probability</subject><subject>Protein structure prediction</subject><subject>Reproducibility of Results</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>Sequence Alignment - methods</subject><subject>Sequence Alignment - standards</subject><subject>Sequence Analysis, RNA</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNktFrFDEQxhdRbK2--yQLvtiHrZnsJrv7IhyHrYWiWPU5zGVnz5Td5Eyyh_3vzXH17EoFyUBC5jcfwzeTZS-BnQE08i1UNRQcmCigStE-yo4PX4_vvY-yZyHcMAZ1w8TT7IiXsqyk5MfZxecJbTT9rbHrfIveoNUUcmNz7cYNeoxmS_n1x0UeSDvbob_NQ_STjpOnfOOpMzoaZ59nT3ocAr24u0-yb-fvvy4_FFefLi6Xi6tiJaGJRY9ctmXHACQw1lUNtQ3pRkrqsEbBBMqed5XUvOmk0D1DRqteIAdiVauxPMne7XU302qkTpONHge18WZMrSmHRs0z1nxXa7dVpZQ1sCYJLPcCK-P-ITDPJB_Uzki1MzK9UrRJ5c1dG979mChENZqgaRjQkpuCgrLmTLTAy_9ARZ0UeSsS-vov9MZN3iY_EyU5VI1oqz_UGgdSxvYu9al3omohykqAELJO1NkDVDodjSZNknqT_mcFp7OCxET6Gdc4haAuv1zPWbZntXcheOoP_gFTu818yLFX9wd3KPi9iuUvZC3cfA</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Anderson, James W J</creator><creator>Novák, Ádám</creator><creator>Sükösd, Zsuzsanna</creator><creator>Golden, Michael</creator><creator>Arunapuram, Preeti</creator><creator>Edvardsson, Ingolfur</creator><creator>Hein, Jotun</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20130501</creationdate><title>Quantifying variances in comparative RNA secondary structure prediction</title><author>Anderson, James W J ; Novák, Ádám ; Sükösd, Zsuzsanna ; Golden, Michael ; Arunapuram, Preeti ; Edvardsson, Ingolfur ; Hein, Jotun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b618t-fa2693d0116100d48e98ec866eda7a505a6f2d46c28d65cf0a0ebf5a21e049ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Base Pairing</topic><topic>Bioinformatics</topic><topic>Eukaryotes</topic><topic>Evolution, Molecular</topic><topic>Gene expression</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Methods</topic><topic>Nucleic Acid Conformation</topic><topic>Physiological aspects</topic><topic>Probability</topic><topic>Protein structure prediction</topic><topic>Reproducibility of Results</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>Sequence Alignment - methods</topic><topic>Sequence Alignment - standards</topic><topic>Sequence Analysis, RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, James W J</creatorcontrib><creatorcontrib>Novák, Ádám</creatorcontrib><creatorcontrib>Sükösd, Zsuzsanna</creatorcontrib><creatorcontrib>Golden, Michael</creatorcontrib><creatorcontrib>Arunapuram, Preeti</creatorcontrib><creatorcontrib>Edvardsson, Ingolfur</creatorcontrib><creatorcontrib>Hein, Jotun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, James W J</au><au>Novák, Ádám</au><au>Sükösd, Zsuzsanna</au><au>Golden, Michael</au><au>Arunapuram, Preeti</au><au>Edvardsson, Ingolfur</au><au>Hein, Jotun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying variances in comparative RNA secondary structure prediction</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>14</volume><issue>1</issue><spage>149</spage><epage>149</epage><pages>149-149</pages><artnum>149</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>With the advancement of next-generation sequencing and transcriptomics technologies, regulatory effects involving RNA, in particular RNA structural changes are being detected. These results often rely on RNA secondary structure predictions. However, current approaches to RNA secondary structure modelling produce predictions with a high variance in predictive accuracy, and we have little quantifiable knowledge about the reasons for these variances.
In this paper we explore a number of factors which can contribute to poor RNA secondary structure prediction quality. We establish a quantified relationship between alignment quality and loss of accuracy. Furthermore, we define two new measures to quantify uncertainty in alignment-based structure predictions. One of the measures improves on the "reliability score" reported by PPfold, and considers alignment uncertainty as well as base-pair probabilities. The other measure considers the information entropy for SCFGs over a space of input alignments.
Our predictive accuracy improves on the PPfold reliability score. We can successfully characterize many of the underlying reasons for and variances in poor prediction. However, there is still variability unaccounted for, which we therefore suggest comes from the RNA secondary structure predictive model itself.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>23634662</pmid><doi>10.1186/1471-2105-14-149</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2013-05, Vol.14 (1), p.149-149, Article 149 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3667108 |
source | PubMed (Medline); Springer Open Access; MEDLINE; SpringerLink (Online service); Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Algorithms Base Pairing Bioinformatics Eukaryotes Evolution, Molecular Gene expression Genetics Genomics Methods Nucleic Acid Conformation Physiological aspects Probability Protein structure prediction Reproducibility of Results Ribonucleic acid RNA RNA - chemistry Sequence Alignment - methods Sequence Alignment - standards Sequence Analysis, RNA |
title | Quantifying variances in comparative RNA secondary structure prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20variances%20in%20comparative%20RNA%20secondary%20structure%20prediction&rft.jtitle=BMC%20bioinformatics&rft.au=Anderson,%20James%20W%20J&rft.date=2013-05-01&rft.volume=14&rft.issue=1&rft.spage=149&rft.epage=149&rft.pages=149-149&rft.artnum=149&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-14-149&rft_dat=%3Cgale_pubme%3EA534515567%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1362148594&rft_id=info:pmid/23634662&rft_galeid=A534515567&rfr_iscdi=true |