VEGF Blockade Enables Oncolytic Cancer Virotherapy in Part by Modulating Intratumoral Myeloid Cells

Understanding the host response to oncolytic viruses is important to maximize their antitumor efficacy. Despite robust cytotoxicity and high virus production of an oncolytic herpes simplex virus (oHSV) in cultured human sarcoma cells, intratumoral (ITu) virus injection resulted in only mild antitumo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2013-05, Vol.21 (5), p.1014-1023
Hauptverfasser: Currier, Mark A, Eshun, Francis K, Sholl, Allyson, Chernoguz, Artur, Crawford, Kelly, Divanovic, Senad, Boon, Louis, Goins, William F, Frischer, Jason S, Collins, Margaret H, Leddon, Jennifer L, Baird, William H, Haseley, Amy, Streby, Keri A, Wang, Pin-Yi, Hendrickson, Brett W, Brekken, Rolf A, Kaur, Balveen, Hildeman, David, Cripe, Timothy P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1023
container_issue 5
container_start_page 1014
container_title Molecular therapy
container_volume 21
creator Currier, Mark A
Eshun, Francis K
Sholl, Allyson
Chernoguz, Artur
Crawford, Kelly
Divanovic, Senad
Boon, Louis
Goins, William F
Frischer, Jason S
Collins, Margaret H
Leddon, Jennifer L
Baird, William H
Haseley, Amy
Streby, Keri A
Wang, Pin-Yi
Hendrickson, Brett W
Brekken, Rolf A
Kaur, Balveen
Hildeman, David
Cripe, Timothy P
description Understanding the host response to oncolytic viruses is important to maximize their antitumor efficacy. Despite robust cytotoxicity and high virus production of an oncolytic herpes simplex virus (oHSV) in cultured human sarcoma cells, intratumoral (ITu) virus injection resulted in only mild antitumor effects in some xenograft models, prompting us to characterize the host inflammatory response. Virotherapy induced an acute neutrophilic infiltrate, a relative decrease of ITu macrophages, and a myeloid cell-dependent upregulation of host-derived vascular endothelial growth factor (VEGF). Anti-VEGF antibodies, bevacizumab and r84, the latter of which binds VEGF and selectively inhibits binding to VEGF receptor-2 (VEGFR2) but not VEGFR1, enhanced the antitumor effects of virotherapy, in part due to decreased angiogenesis but not increased virus production. Neither antibody affected neutrophilic infiltration but both partially mitigated virus-induced depletion of macrophages. Enhancement of virotherapy-mediated antitumor effects by anti-VEGF antibodies could largely be recapitulated by systemic depletion of CD11b+ cells. These data suggest the combined effect of oHSV virotherapy and anti-VEGF antibodies is in part due to modulation of a host inflammatory reaction to virus. Our data provide strong preclinical support for combined oHSV and anti-VEGF antibody therapy and suggest that understanding and counteracting the innate host response may help enable the full antitumor potential of oncolytic virotherapy.
doi_str_mv 10.1038/mt.2013.39
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3666636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001616306815</els_id><sourcerecordid>1668244967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-aaf2efe6bdc60d3207ec71d8185982542e2a0eb6ffcd189b448d0c2054a59cbc3</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxQdRbK2--AEk4IsIu-bfZCYvgi7bWmipD21fQya506ZmJtskU5hvb5ati0qh9-VeuD8O955TVe8JXhLM2i9DXlJM2JLJF9UhqWm9wJjyl_uZiIPqTUp3ZSK1FK-rA8p4Sxhlh5W5Xp8co-8-mF_aAlqPuvOQ0MVogp-zM2ilRwMRXbsY8i1EvZmRG9FPHTPqZnQe7OR1duMNOh1z1HkaQtQenc_gg7NoBd6nt9WrXvsE7x77UXV1vL5c_VicXZycrr6dLQxveV5o3VPoQXTWCGwZxQ2YhtiWtLVsac0pUI2hE31vLGllx3lrsaG45rqWpjPsqPq6091M3QDWwPYirzbRDTrOKmin_t2M7lbdhAfFRCkmisCnR4EY7idIWQ0umfKCHiFMSREhWsq5FM3zaHGYS4kFK-jH_9C7MMWxOKFII2mNm1rgQn3eUSaGlCL0-7sJVtuY1ZDVNmbFZIE__P3pHv2TawH4DoDi94ODqJJxUJK0LoLJygb3lO5vX3e1Ng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792507560</pqid></control><display><type>article</type><title>VEGF Blockade Enables Oncolytic Cancer Virotherapy in Part by Modulating Intratumoral Myeloid Cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Currier, Mark A ; Eshun, Francis K ; Sholl, Allyson ; Chernoguz, Artur ; Crawford, Kelly ; Divanovic, Senad ; Boon, Louis ; Goins, William F ; Frischer, Jason S ; Collins, Margaret H ; Leddon, Jennifer L ; Baird, William H ; Haseley, Amy ; Streby, Keri A ; Wang, Pin-Yi ; Hendrickson, Brett W ; Brekken, Rolf A ; Kaur, Balveen ; Hildeman, David ; Cripe, Timothy P</creator><creatorcontrib>Currier, Mark A ; Eshun, Francis K ; Sholl, Allyson ; Chernoguz, Artur ; Crawford, Kelly ; Divanovic, Senad ; Boon, Louis ; Goins, William F ; Frischer, Jason S ; Collins, Margaret H ; Leddon, Jennifer L ; Baird, William H ; Haseley, Amy ; Streby, Keri A ; Wang, Pin-Yi ; Hendrickson, Brett W ; Brekken, Rolf A ; Kaur, Balveen ; Hildeman, David ; Cripe, Timothy P</creatorcontrib><description>Understanding the host response to oncolytic viruses is important to maximize their antitumor efficacy. Despite robust cytotoxicity and high virus production of an oncolytic herpes simplex virus (oHSV) in cultured human sarcoma cells, intratumoral (ITu) virus injection resulted in only mild antitumor effects in some xenograft models, prompting us to characterize the host inflammatory response. Virotherapy induced an acute neutrophilic infiltrate, a relative decrease of ITu macrophages, and a myeloid cell-dependent upregulation of host-derived vascular endothelial growth factor (VEGF). Anti-VEGF antibodies, bevacizumab and r84, the latter of which binds VEGF and selectively inhibits binding to VEGF receptor-2 (VEGFR2) but not VEGFR1, enhanced the antitumor effects of virotherapy, in part due to decreased angiogenesis but not increased virus production. Neither antibody affected neutrophilic infiltration but both partially mitigated virus-induced depletion of macrophages. Enhancement of virotherapy-mediated antitumor effects by anti-VEGF antibodies could largely be recapitulated by systemic depletion of CD11b+ cells. These data suggest the combined effect of oHSV virotherapy and anti-VEGF antibodies is in part due to modulation of a host inflammatory reaction to virus. Our data provide strong preclinical support for combined oHSV and anti-VEGF antibody therapy and suggest that understanding and counteracting the innate host response may help enable the full antitumor potential of oncolytic virotherapy.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1038/mt.2013.39</identifier><identifier>PMID: 23481323</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Angiogenesis ; Animals ; Antibodies ; Antibodies, Monoclonal, Humanized - administration &amp; dosage ; Antibodies, Monoclonal, Humanized - pharmacology ; Bevacizumab ; Cancer ; CD11b Antigen - metabolism ; Cell Culture Techniques ; Cell Line, Tumor ; Cells ; Cytokines ; Cytotoxicity ; Disease ; Disease Models, Animal ; Ewings sarcoma ; Female ; Genetic Vectors - administration &amp; dosage ; Genetic Vectors - immunology ; Hematology ; Herpes simplex virus ; Herpes viruses ; Hospitals ; Humans ; Immunotherapy ; Infections ; Macrophages - immunology ; Macrophages - metabolism ; Mice ; Myeloid Cells - immunology ; Myeloid Cells - metabolism ; Neoplasms - immunology ; Neoplasms - metabolism ; Neoplasms - therapy ; Neovascularization, Pathologic - therapy ; Oncology ; Oncolytic Virotherapy ; Oncolytic Viruses - immunology ; Original ; Pediatrics ; Sarcoma - immunology ; Sarcoma - metabolism ; Sarcoma - therapy ; Simplexvirus - immunology ; Stromal Cells - metabolism ; Stromal Cells - virology ; Surgery ; Tumors ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - antagonists &amp; inhibitors ; Vascular Endothelial Growth Factor A - biosynthesis ; Vascular Endothelial Growth Factor A - immunology ; Virus Replication - drug effects ; Xenograft Model Antitumor Assays</subject><ispartof>Molecular therapy, 2013-05, Vol.21 (5), p.1014-1023</ispartof><rights>2013 The American Society of Gene &amp; Cell Therapy</rights><rights>Copyright Nature Publishing Group May 2013</rights><rights>Copyright © 2013 The American Society of Gene &amp; Cell Therapy 2013 The American Society of Gene &amp; Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-aaf2efe6bdc60d3207ec71d8185982542e2a0eb6ffcd189b448d0c2054a59cbc3</citedby><cites>FETCH-LOGICAL-c484t-aaf2efe6bdc60d3207ec71d8185982542e2a0eb6ffcd189b448d0c2054a59cbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666636/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666636/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23481323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Currier, Mark A</creatorcontrib><creatorcontrib>Eshun, Francis K</creatorcontrib><creatorcontrib>Sholl, Allyson</creatorcontrib><creatorcontrib>Chernoguz, Artur</creatorcontrib><creatorcontrib>Crawford, Kelly</creatorcontrib><creatorcontrib>Divanovic, Senad</creatorcontrib><creatorcontrib>Boon, Louis</creatorcontrib><creatorcontrib>Goins, William F</creatorcontrib><creatorcontrib>Frischer, Jason S</creatorcontrib><creatorcontrib>Collins, Margaret H</creatorcontrib><creatorcontrib>Leddon, Jennifer L</creatorcontrib><creatorcontrib>Baird, William H</creatorcontrib><creatorcontrib>Haseley, Amy</creatorcontrib><creatorcontrib>Streby, Keri A</creatorcontrib><creatorcontrib>Wang, Pin-Yi</creatorcontrib><creatorcontrib>Hendrickson, Brett W</creatorcontrib><creatorcontrib>Brekken, Rolf A</creatorcontrib><creatorcontrib>Kaur, Balveen</creatorcontrib><creatorcontrib>Hildeman, David</creatorcontrib><creatorcontrib>Cripe, Timothy P</creatorcontrib><title>VEGF Blockade Enables Oncolytic Cancer Virotherapy in Part by Modulating Intratumoral Myeloid Cells</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Understanding the host response to oncolytic viruses is important to maximize their antitumor efficacy. Despite robust cytotoxicity and high virus production of an oncolytic herpes simplex virus (oHSV) in cultured human sarcoma cells, intratumoral (ITu) virus injection resulted in only mild antitumor effects in some xenograft models, prompting us to characterize the host inflammatory response. Virotherapy induced an acute neutrophilic infiltrate, a relative decrease of ITu macrophages, and a myeloid cell-dependent upregulation of host-derived vascular endothelial growth factor (VEGF). Anti-VEGF antibodies, bevacizumab and r84, the latter of which binds VEGF and selectively inhibits binding to VEGF receptor-2 (VEGFR2) but not VEGFR1, enhanced the antitumor effects of virotherapy, in part due to decreased angiogenesis but not increased virus production. Neither antibody affected neutrophilic infiltration but both partially mitigated virus-induced depletion of macrophages. Enhancement of virotherapy-mediated antitumor effects by anti-VEGF antibodies could largely be recapitulated by systemic depletion of CD11b+ cells. These data suggest the combined effect of oHSV virotherapy and anti-VEGF antibodies is in part due to modulation of a host inflammatory reaction to virus. Our data provide strong preclinical support for combined oHSV and anti-VEGF antibody therapy and suggest that understanding and counteracting the innate host response may help enable the full antitumor potential of oncolytic virotherapy.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, Monoclonal, Humanized - administration &amp; dosage</subject><subject>Antibodies, Monoclonal, Humanized - pharmacology</subject><subject>Bevacizumab</subject><subject>Cancer</subject><subject>CD11b Antigen - metabolism</subject><subject>Cell Culture Techniques</subject><subject>Cell Line, Tumor</subject><subject>Cells</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Disease</subject><subject>Disease Models, Animal</subject><subject>Ewings sarcoma</subject><subject>Female</subject><subject>Genetic Vectors - administration &amp; dosage</subject><subject>Genetic Vectors - immunology</subject><subject>Hematology</subject><subject>Herpes simplex virus</subject><subject>Herpes viruses</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Infections</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Mice</subject><subject>Myeloid Cells - immunology</subject><subject>Myeloid Cells - metabolism</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - therapy</subject><subject>Neovascularization, Pathologic - therapy</subject><subject>Oncology</subject><subject>Oncolytic Virotherapy</subject><subject>Oncolytic Viruses - immunology</subject><subject>Original</subject><subject>Pediatrics</subject><subject>Sarcoma - immunology</subject><subject>Sarcoma - metabolism</subject><subject>Sarcoma - therapy</subject><subject>Simplexvirus - immunology</subject><subject>Stromal Cells - metabolism</subject><subject>Stromal Cells - virology</subject><subject>Surgery</subject><subject>Tumors</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - antagonists &amp; inhibitors</subject><subject>Vascular Endothelial Growth Factor A - biosynthesis</subject><subject>Vascular Endothelial Growth Factor A - immunology</subject><subject>Virus Replication - drug effects</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkV9rFDEUxQdRbK2--AEk4IsIu-bfZCYvgi7bWmipD21fQya506ZmJtskU5hvb5ati0qh9-VeuD8O955TVe8JXhLM2i9DXlJM2JLJF9UhqWm9wJjyl_uZiIPqTUp3ZSK1FK-rA8p4Sxhlh5W5Xp8co-8-mF_aAlqPuvOQ0MVogp-zM2ilRwMRXbsY8i1EvZmRG9FPHTPqZnQe7OR1duMNOh1z1HkaQtQenc_gg7NoBd6nt9WrXvsE7x77UXV1vL5c_VicXZycrr6dLQxveV5o3VPoQXTWCGwZxQ2YhtiWtLVsac0pUI2hE31vLGllx3lrsaG45rqWpjPsqPq6091M3QDWwPYirzbRDTrOKmin_t2M7lbdhAfFRCkmisCnR4EY7idIWQ0umfKCHiFMSREhWsq5FM3zaHGYS4kFK-jH_9C7MMWxOKFII2mNm1rgQn3eUSaGlCL0-7sJVtuY1ZDVNmbFZIE__P3pHv2TawH4DoDi94ODqJJxUJK0LoLJygb3lO5vX3e1Ng</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Currier, Mark A</creator><creator>Eshun, Francis K</creator><creator>Sholl, Allyson</creator><creator>Chernoguz, Artur</creator><creator>Crawford, Kelly</creator><creator>Divanovic, Senad</creator><creator>Boon, Louis</creator><creator>Goins, William F</creator><creator>Frischer, Jason S</creator><creator>Collins, Margaret H</creator><creator>Leddon, Jennifer L</creator><creator>Baird, William H</creator><creator>Haseley, Amy</creator><creator>Streby, Keri A</creator><creator>Wang, Pin-Yi</creator><creator>Hendrickson, Brett W</creator><creator>Brekken, Rolf A</creator><creator>Kaur, Balveen</creator><creator>Hildeman, David</creator><creator>Cripe, Timothy P</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Nature Publishing Group</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope><scope>7T5</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20130501</creationdate><title>VEGF Blockade Enables Oncolytic Cancer Virotherapy in Part by Modulating Intratumoral Myeloid Cells</title><author>Currier, Mark A ; Eshun, Francis K ; Sholl, Allyson ; Chernoguz, Artur ; Crawford, Kelly ; Divanovic, Senad ; Boon, Louis ; Goins, William F ; Frischer, Jason S ; Collins, Margaret H ; Leddon, Jennifer L ; Baird, William H ; Haseley, Amy ; Streby, Keri A ; Wang, Pin-Yi ; Hendrickson, Brett W ; Brekken, Rolf A ; Kaur, Balveen ; Hildeman, David ; Cripe, Timothy P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-aaf2efe6bdc60d3207ec71d8185982542e2a0eb6ffcd189b448d0c2054a59cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, Monoclonal, Humanized - administration &amp; dosage</topic><topic>Antibodies, Monoclonal, Humanized - pharmacology</topic><topic>Bevacizumab</topic><topic>Cancer</topic><topic>CD11b Antigen - metabolism</topic><topic>Cell Culture Techniques</topic><topic>Cell Line, Tumor</topic><topic>Cells</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Disease</topic><topic>Disease Models, Animal</topic><topic>Ewings sarcoma</topic><topic>Female</topic><topic>Genetic Vectors - administration &amp; dosage</topic><topic>Genetic Vectors - immunology</topic><topic>Hematology</topic><topic>Herpes simplex virus</topic><topic>Herpes viruses</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Infections</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Mice</topic><topic>Myeloid Cells - immunology</topic><topic>Myeloid Cells - metabolism</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - therapy</topic><topic>Neovascularization, Pathologic - therapy</topic><topic>Oncology</topic><topic>Oncolytic Virotherapy</topic><topic>Oncolytic Viruses - immunology</topic><topic>Original</topic><topic>Pediatrics</topic><topic>Sarcoma - immunology</topic><topic>Sarcoma - metabolism</topic><topic>Sarcoma - therapy</topic><topic>Simplexvirus - immunology</topic><topic>Stromal Cells - metabolism</topic><topic>Stromal Cells - virology</topic><topic>Surgery</topic><topic>Tumors</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - antagonists &amp; inhibitors</topic><topic>Vascular Endothelial Growth Factor A - biosynthesis</topic><topic>Vascular Endothelial Growth Factor A - immunology</topic><topic>Virus Replication - drug effects</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Currier, Mark A</creatorcontrib><creatorcontrib>Eshun, Francis K</creatorcontrib><creatorcontrib>Sholl, Allyson</creatorcontrib><creatorcontrib>Chernoguz, Artur</creatorcontrib><creatorcontrib>Crawford, Kelly</creatorcontrib><creatorcontrib>Divanovic, Senad</creatorcontrib><creatorcontrib>Boon, Louis</creatorcontrib><creatorcontrib>Goins, William F</creatorcontrib><creatorcontrib>Frischer, Jason S</creatorcontrib><creatorcontrib>Collins, Margaret H</creatorcontrib><creatorcontrib>Leddon, Jennifer L</creatorcontrib><creatorcontrib>Baird, William H</creatorcontrib><creatorcontrib>Haseley, Amy</creatorcontrib><creatorcontrib>Streby, Keri A</creatorcontrib><creatorcontrib>Wang, Pin-Yi</creatorcontrib><creatorcontrib>Hendrickson, Brett W</creatorcontrib><creatorcontrib>Brekken, Rolf A</creatorcontrib><creatorcontrib>Kaur, Balveen</creatorcontrib><creatorcontrib>Hildeman, David</creatorcontrib><creatorcontrib>Cripe, Timothy P</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Currier, Mark A</au><au>Eshun, Francis K</au><au>Sholl, Allyson</au><au>Chernoguz, Artur</au><au>Crawford, Kelly</au><au>Divanovic, Senad</au><au>Boon, Louis</au><au>Goins, William F</au><au>Frischer, Jason S</au><au>Collins, Margaret H</au><au>Leddon, Jennifer L</au><au>Baird, William H</au><au>Haseley, Amy</au><au>Streby, Keri A</au><au>Wang, Pin-Yi</au><au>Hendrickson, Brett W</au><au>Brekken, Rolf A</au><au>Kaur, Balveen</au><au>Hildeman, David</au><au>Cripe, Timothy P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VEGF Blockade Enables Oncolytic Cancer Virotherapy in Part by Modulating Intratumoral Myeloid Cells</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>21</volume><issue>5</issue><spage>1014</spage><epage>1023</epage><pages>1014-1023</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Understanding the host response to oncolytic viruses is important to maximize their antitumor efficacy. Despite robust cytotoxicity and high virus production of an oncolytic herpes simplex virus (oHSV) in cultured human sarcoma cells, intratumoral (ITu) virus injection resulted in only mild antitumor effects in some xenograft models, prompting us to characterize the host inflammatory response. Virotherapy induced an acute neutrophilic infiltrate, a relative decrease of ITu macrophages, and a myeloid cell-dependent upregulation of host-derived vascular endothelial growth factor (VEGF). Anti-VEGF antibodies, bevacizumab and r84, the latter of which binds VEGF and selectively inhibits binding to VEGF receptor-2 (VEGFR2) but not VEGFR1, enhanced the antitumor effects of virotherapy, in part due to decreased angiogenesis but not increased virus production. Neither antibody affected neutrophilic infiltration but both partially mitigated virus-induced depletion of macrophages. Enhancement of virotherapy-mediated antitumor effects by anti-VEGF antibodies could largely be recapitulated by systemic depletion of CD11b+ cells. These data suggest the combined effect of oHSV virotherapy and anti-VEGF antibodies is in part due to modulation of a host inflammatory reaction to virus. Our data provide strong preclinical support for combined oHSV and anti-VEGF antibody therapy and suggest that understanding and counteracting the innate host response may help enable the full antitumor potential of oncolytic virotherapy.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23481323</pmid><doi>10.1038/mt.2013.39</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2013-05, Vol.21 (5), p.1014-1023
issn 1525-0016
1525-0024
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3666636
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Angiogenesis
Animals
Antibodies
Antibodies, Monoclonal, Humanized - administration & dosage
Antibodies, Monoclonal, Humanized - pharmacology
Bevacizumab
Cancer
CD11b Antigen - metabolism
Cell Culture Techniques
Cell Line, Tumor
Cells
Cytokines
Cytotoxicity
Disease
Disease Models, Animal
Ewings sarcoma
Female
Genetic Vectors - administration & dosage
Genetic Vectors - immunology
Hematology
Herpes simplex virus
Herpes viruses
Hospitals
Humans
Immunotherapy
Infections
Macrophages - immunology
Macrophages - metabolism
Mice
Myeloid Cells - immunology
Myeloid Cells - metabolism
Neoplasms - immunology
Neoplasms - metabolism
Neoplasms - therapy
Neovascularization, Pathologic - therapy
Oncology
Oncolytic Virotherapy
Oncolytic Viruses - immunology
Original
Pediatrics
Sarcoma - immunology
Sarcoma - metabolism
Sarcoma - therapy
Simplexvirus - immunology
Stromal Cells - metabolism
Stromal Cells - virology
Surgery
Tumors
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - antagonists & inhibitors
Vascular Endothelial Growth Factor A - biosynthesis
Vascular Endothelial Growth Factor A - immunology
Virus Replication - drug effects
Xenograft Model Antitumor Assays
title VEGF Blockade Enables Oncolytic Cancer Virotherapy in Part by Modulating Intratumoral Myeloid Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VEGF%20Blockade%20Enables%20Oncolytic%20Cancer%20Virotherapy%20in%20Part%20by%20Modulating%20Intratumoral%20Myeloid%20Cells&rft.jtitle=Molecular%20therapy&rft.au=Currier,%20Mark%20A&rft.date=2013-05-01&rft.volume=21&rft.issue=5&rft.spage=1014&rft.epage=1023&rft.pages=1014-1023&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1038/mt.2013.39&rft_dat=%3Cproquest_pubme%3E1668244967%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792507560&rft_id=info:pmid/23481323&rft_els_id=S1525001616306815&rfr_iscdi=true