Global remodeling of nucleosome positions in C. elegans

Eukaryotic chromatin architecture is affected by intrinsic histone-DNA sequence preferences, steric exclusion between nucleosome particles, formation of higher-order structures, and in vivo activity of chromatin remodeling enzymes. To disentangle sequence-dependent nucleosome positioning from the ot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics 2013-04, Vol.14 (1), p.284-284, Article 284
Hauptverfasser: Locke, George, Haberman, Devorah, Johnson, Steven M, Morozov, Alexandre V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 1
container_start_page 284
container_title BMC genomics
container_volume 14
creator Locke, George
Haberman, Devorah
Johnson, Steven M
Morozov, Alexandre V
description Eukaryotic chromatin architecture is affected by intrinsic histone-DNA sequence preferences, steric exclusion between nucleosome particles, formation of higher-order structures, and in vivo activity of chromatin remodeling enzymes. To disentangle sequence-dependent nucleosome positioning from the other factors, we have created two high-throughput maps of nucleosomes assembled in vitro on genomic DNA from the nematode worm Caenorhabditis elegans. A comparison of in vitro nucleosome positions with those observed in a mixed-stage, mixed-tissue population of C. elegans cells reveals that in vivo sequence preferences are modified on the genomic scale. Indeed, G/C dinucleotides are predicted to be most favorable for nucleosome formation in vitro but not in vivo. Nucleosome sequence read coverage in vivo is distinctly lower in chromosome arms than in central regions; the observed changes in apparent nucleosome sequence specificity, likely due to genome-wide chromatin remodeler activity, contribute to the formation of these megabase-scale chromatin domains. We also observe that the majority of well-positioned in vivo nucleosomes do not occupy thermodynamically favorable sequences observed in vitro. Finally, we find that exons are intrinsically more amenable to nucleosome formation compared to introns. Nucleosome occupancy of introns and exons consistently increases with G/C content in vitro but not in vivo, in agreement with our observation that G/C dinucleotide enrichment does not strongly promote in vivo nucleosome formation. Our findings highlight the importance of both sequence specificity and active nucleosome repositioning in creating large-scale chromatin domains, and the antagonistic roles of intrinsic sequence preferences and chromatin remodelers in C. elegans.Sequence read data has been deposited into Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra; accession number SRA050182). Additional data, software and computational predictions are available on the Nucleosome Explorer website (http://nucleosome.rutgers.edu).
doi_str_mv 10.1186/1471-2164-14-284
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3663828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534549402</galeid><sourcerecordid>A534549402</sourcerecordid><originalsourceid>FETCH-LOGICAL-b618t-f5d4984712d73429db128df328fcc792e49e700fae4f846769cc3af7cf5bf6e93</originalsourceid><addsrcrecordid>eNqNkk2LFDEQhoMo7rp69yQNXvTQY746SV-EZdB1YUHw4xzS6UqbJZ2MnW7Rf2_GWcdtWUFySFH11EvxViH0lOANIUq8IlySmhLBa8Jrqvg9dHpM3b8Vn6BHOV9jTKSizUN0QpmglHB6iuRFSJ0J1QRj6iH4OFTJVXGxAVJOI1S7lP3sU8yVj9V2U0GAwcT8GD1wJmR4cvOfoc9v33zavquv3l9cbs-v6k4QNdeu6Xmryhi0l4zTtu8IVb1jVDlrZUuBtyAxdga4U1xI0VrLjJPWNZ0T0LIz9Pqgu1u6EXoLcZ5M0LvJj2b6oZPxel2J_ose0jfNhGCKqiKwPQh0Pv1DYF2xadR74_TeuBLp4mtReXEzxpS-LpBnPfpsIQQTIS1ZEyYkb0kj1H-gjWBtWYAo6PO_0Ou0TLH4-YvCjaCc_aEGE0D76FKZ0-5F9XnDeMNbjmmhNndQ5fUwepsiOF_yq4aXq4bCzPB9HsySs778-GHN4gNrp5TzBO7oH8F6f4l3Ofbs9uKODb9Pj_0EYEHViA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1356056243</pqid></control><display><type>article</type><title>Global remodeling of nucleosome positions in C. elegans</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>PubMed Central Open Access</source><creator>Locke, George ; Haberman, Devorah ; Johnson, Steven M ; Morozov, Alexandre V</creator><creatorcontrib>Locke, George ; Haberman, Devorah ; Johnson, Steven M ; Morozov, Alexandre V</creatorcontrib><description>Eukaryotic chromatin architecture is affected by intrinsic histone-DNA sequence preferences, steric exclusion between nucleosome particles, formation of higher-order structures, and in vivo activity of chromatin remodeling enzymes. To disentangle sequence-dependent nucleosome positioning from the other factors, we have created two high-throughput maps of nucleosomes assembled in vitro on genomic DNA from the nematode worm Caenorhabditis elegans. A comparison of in vitro nucleosome positions with those observed in a mixed-stage, mixed-tissue population of C. elegans cells reveals that in vivo sequence preferences are modified on the genomic scale. Indeed, G/C dinucleotides are predicted to be most favorable for nucleosome formation in vitro but not in vivo. Nucleosome sequence read coverage in vivo is distinctly lower in chromosome arms than in central regions; the observed changes in apparent nucleosome sequence specificity, likely due to genome-wide chromatin remodeler activity, contribute to the formation of these megabase-scale chromatin domains. We also observe that the majority of well-positioned in vivo nucleosomes do not occupy thermodynamically favorable sequences observed in vitro. Finally, we find that exons are intrinsically more amenable to nucleosome formation compared to introns. Nucleosome occupancy of introns and exons consistently increases with G/C content in vitro but not in vivo, in agreement with our observation that G/C dinucleotide enrichment does not strongly promote in vivo nucleosome formation. Our findings highlight the importance of both sequence specificity and active nucleosome repositioning in creating large-scale chromatin domains, and the antagonistic roles of intrinsic sequence preferences and chromatin remodelers in C. elegans.Sequence read data has been deposited into Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra; accession number SRA050182). Additional data, software and computational predictions are available on the Nucleosome Explorer website (http://nucleosome.rutgers.edu).</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/1471-2164-14-284</identifier><identifier>PMID: 23622142</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Animals ; Base Sequence ; Binding sites ; Bioinformatics ; Caenorhabditis elegans ; Caenorhabditis elegans - genetics ; Chromatin ; Chromatin Assembly and Disassembly ; Computational Biology ; Deoxyribonucleic acid ; DNA ; DNA methylation ; DNA repair ; DNA sequencing ; Genes ; Genetic aspects ; Genetics ; Genomes ; Models, Genetic ; Molecular weight ; Nematoda ; Nucleosomes ; Nucleosomes - genetics ; Nucleotide sequencing ; Nucleotides - genetics ; Physiological aspects ; Scholarships &amp; fellowships ; Transcription, Genetic</subject><ispartof>BMC genomics, 2013-04, Vol.14 (1), p.284-284, Article 284</ispartof><rights>COPYRIGHT 2013 BioMed Central Ltd.</rights><rights>2013 Locke et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2013 Locke et al.; licensee BioMed Central Ltd. 2013 Locke et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b618t-f5d4984712d73429db128df328fcc792e49e700fae4f846769cc3af7cf5bf6e93</citedby><cites>FETCH-LOGICAL-b618t-f5d4984712d73429db128df328fcc792e49e700fae4f846769cc3af7cf5bf6e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663828/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663828/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23622142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Locke, George</creatorcontrib><creatorcontrib>Haberman, Devorah</creatorcontrib><creatorcontrib>Johnson, Steven M</creatorcontrib><creatorcontrib>Morozov, Alexandre V</creatorcontrib><title>Global remodeling of nucleosome positions in C. elegans</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Eukaryotic chromatin architecture is affected by intrinsic histone-DNA sequence preferences, steric exclusion between nucleosome particles, formation of higher-order structures, and in vivo activity of chromatin remodeling enzymes. To disentangle sequence-dependent nucleosome positioning from the other factors, we have created two high-throughput maps of nucleosomes assembled in vitro on genomic DNA from the nematode worm Caenorhabditis elegans. A comparison of in vitro nucleosome positions with those observed in a mixed-stage, mixed-tissue population of C. elegans cells reveals that in vivo sequence preferences are modified on the genomic scale. Indeed, G/C dinucleotides are predicted to be most favorable for nucleosome formation in vitro but not in vivo. Nucleosome sequence read coverage in vivo is distinctly lower in chromosome arms than in central regions; the observed changes in apparent nucleosome sequence specificity, likely due to genome-wide chromatin remodeler activity, contribute to the formation of these megabase-scale chromatin domains. We also observe that the majority of well-positioned in vivo nucleosomes do not occupy thermodynamically favorable sequences observed in vitro. Finally, we find that exons are intrinsically more amenable to nucleosome formation compared to introns. Nucleosome occupancy of introns and exons consistently increases with G/C content in vitro but not in vivo, in agreement with our observation that G/C dinucleotide enrichment does not strongly promote in vivo nucleosome formation. Our findings highlight the importance of both sequence specificity and active nucleosome repositioning in creating large-scale chromatin domains, and the antagonistic roles of intrinsic sequence preferences and chromatin remodelers in C. elegans.Sequence read data has been deposited into Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra; accession number SRA050182). Additional data, software and computational predictions are available on the Nucleosome Explorer website (http://nucleosome.rutgers.edu).</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Chromatin</subject><subject>Chromatin Assembly and Disassembly</subject><subject>Computational Biology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA repair</subject><subject>DNA sequencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Models, Genetic</subject><subject>Molecular weight</subject><subject>Nematoda</subject><subject>Nucleosomes</subject><subject>Nucleosomes - genetics</subject><subject>Nucleotide sequencing</subject><subject>Nucleotides - genetics</subject><subject>Physiological aspects</subject><subject>Scholarships &amp; fellowships</subject><subject>Transcription, Genetic</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk2LFDEQhoMo7rp69yQNXvTQY746SV-EZdB1YUHw4xzS6UqbJZ2MnW7Rf2_GWcdtWUFySFH11EvxViH0lOANIUq8IlySmhLBa8Jrqvg9dHpM3b8Vn6BHOV9jTKSizUN0QpmglHB6iuRFSJ0J1QRj6iH4OFTJVXGxAVJOI1S7lP3sU8yVj9V2U0GAwcT8GD1wJmR4cvOfoc9v33zavquv3l9cbs-v6k4QNdeu6Xmryhi0l4zTtu8IVb1jVDlrZUuBtyAxdga4U1xI0VrLjJPWNZ0T0LIz9Pqgu1u6EXoLcZ5M0LvJj2b6oZPxel2J_ose0jfNhGCKqiKwPQh0Pv1DYF2xadR74_TeuBLp4mtReXEzxpS-LpBnPfpsIQQTIS1ZEyYkb0kj1H-gjWBtWYAo6PO_0Ou0TLH4-YvCjaCc_aEGE0D76FKZ0-5F9XnDeMNbjmmhNndQ5fUwepsiOF_yq4aXq4bCzPB9HsySs778-GHN4gNrp5TzBO7oH8F6f4l3Ofbs9uKODb9Pj_0EYEHViA</recordid><startdate>20130426</startdate><enddate>20130426</enddate><creator>Locke, George</creator><creator>Haberman, Devorah</creator><creator>Johnson, Steven M</creator><creator>Morozov, Alexandre V</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20130426</creationdate><title>Global remodeling of nucleosome positions in C. elegans</title><author>Locke, George ; Haberman, Devorah ; Johnson, Steven M ; Morozov, Alexandre V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b618t-f5d4984712d73429db128df328fcc792e49e700fae4f846769cc3af7cf5bf6e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Chromatin</topic><topic>Chromatin Assembly and Disassembly</topic><topic>Computational Biology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA repair</topic><topic>DNA sequencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Models, Genetic</topic><topic>Molecular weight</topic><topic>Nematoda</topic><topic>Nucleosomes</topic><topic>Nucleosomes - genetics</topic><topic>Nucleotide sequencing</topic><topic>Nucleotides - genetics</topic><topic>Physiological aspects</topic><topic>Scholarships &amp; fellowships</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Locke, George</creatorcontrib><creatorcontrib>Haberman, Devorah</creatorcontrib><creatorcontrib>Johnson, Steven M</creatorcontrib><creatorcontrib>Morozov, Alexandre V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Locke, George</au><au>Haberman, Devorah</au><au>Johnson, Steven M</au><au>Morozov, Alexandre V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global remodeling of nucleosome positions in C. elegans</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2013-04-26</date><risdate>2013</risdate><volume>14</volume><issue>1</issue><spage>284</spage><epage>284</epage><pages>284-284</pages><artnum>284</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Eukaryotic chromatin architecture is affected by intrinsic histone-DNA sequence preferences, steric exclusion between nucleosome particles, formation of higher-order structures, and in vivo activity of chromatin remodeling enzymes. To disentangle sequence-dependent nucleosome positioning from the other factors, we have created two high-throughput maps of nucleosomes assembled in vitro on genomic DNA from the nematode worm Caenorhabditis elegans. A comparison of in vitro nucleosome positions with those observed in a mixed-stage, mixed-tissue population of C. elegans cells reveals that in vivo sequence preferences are modified on the genomic scale. Indeed, G/C dinucleotides are predicted to be most favorable for nucleosome formation in vitro but not in vivo. Nucleosome sequence read coverage in vivo is distinctly lower in chromosome arms than in central regions; the observed changes in apparent nucleosome sequence specificity, likely due to genome-wide chromatin remodeler activity, contribute to the formation of these megabase-scale chromatin domains. We also observe that the majority of well-positioned in vivo nucleosomes do not occupy thermodynamically favorable sequences observed in vitro. Finally, we find that exons are intrinsically more amenable to nucleosome formation compared to introns. Nucleosome occupancy of introns and exons consistently increases with G/C content in vitro but not in vivo, in agreement with our observation that G/C dinucleotide enrichment does not strongly promote in vivo nucleosome formation. Our findings highlight the importance of both sequence specificity and active nucleosome repositioning in creating large-scale chromatin domains, and the antagonistic roles of intrinsic sequence preferences and chromatin remodelers in C. elegans.Sequence read data has been deposited into Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra; accession number SRA050182). Additional data, software and computational predictions are available on the Nucleosome Explorer website (http://nucleosome.rutgers.edu).</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>23622142</pmid><doi>10.1186/1471-2164-14-284</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2013-04, Vol.14 (1), p.284-284, Article 284
issn 1471-2164
1471-2164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3663828
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; PubMed Central Open Access
subjects Animals
Base Sequence
Binding sites
Bioinformatics
Caenorhabditis elegans
Caenorhabditis elegans - genetics
Chromatin
Chromatin Assembly and Disassembly
Computational Biology
Deoxyribonucleic acid
DNA
DNA methylation
DNA repair
DNA sequencing
Genes
Genetic aspects
Genetics
Genomes
Models, Genetic
Molecular weight
Nematoda
Nucleosomes
Nucleosomes - genetics
Nucleotide sequencing
Nucleotides - genetics
Physiological aspects
Scholarships & fellowships
Transcription, Genetic
title Global remodeling of nucleosome positions in C. elegans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20remodeling%20of%20nucleosome%20positions%20in%20C.%20elegans&rft.jtitle=BMC%20genomics&rft.au=Locke,%20George&rft.date=2013-04-26&rft.volume=14&rft.issue=1&rft.spage=284&rft.epage=284&rft.pages=284-284&rft.artnum=284&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/1471-2164-14-284&rft_dat=%3Cgale_pubme%3EA534549402%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1356056243&rft_id=info:pmid/23622142&rft_galeid=A534549402&rfr_iscdi=true