A novel method for the identification of synchronization effects in multichannel ECoG with an application to epilepsy
In this paper, we present a novel method for the identification of synchronization effects in multichannel electrocorticograms (ECoG). Based on autoregressive modeling, we define a dependency measure termed extrinsic-to-intrinsic power ratio (EIPR) which quantifies directed coupling effects in the t...
Gespeichert in:
Veröffentlicht in: | Biological cybernetics 2013-06, Vol.107 (3), p.321-335 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 335 |
---|---|
container_issue | 3 |
container_start_page | 321 |
container_title | Biological cybernetics |
container_volume | 107 |
creator | Graef, A. Hartmann, M. Flamm, C. Baumgartner, C. Deistler, M. Kluge, T. |
description | In this paper, we present a novel method for the identification of synchronization effects in multichannel electrocorticograms (ECoG). Based on autoregressive modeling, we define a dependency measure termed extrinsic-to-intrinsic power ratio (EIPR) which quantifies directed coupling effects in the time domain. Hereby, a dynamic input channel selection algorithm assures the estimation of the model parameters despite the strong spatial correlation among the high number of involved ECoG channels. We compare EIPR to the partial directed coherence, show its ability to indicate Granger causality and successfully validate a signal model. Applying EIPR to ictal ECoG data of patients suffering from temporal lobe epilepsy allows us to identify the electrodes of the seizure onset zone. The results obtained by the proposed method are in good accordance with the clinical findings. |
doi_str_mv | 10.1007/s00422-013-0552-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3661083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372627387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-d7a9e983858bca179fc88a350d9f1e9d0a9aa66e88086e9a6cf0d2297b91d97c3</originalsourceid><addsrcrecordid>eNqNkl9rFTEQxRdR7LX6AXyRgAi-rE6Szb8XoVxqFQq-6HPIzSbdlL3Jmuy2XD-9u-xtrYLoU2DmNydzhlNVLzG8wwDifQFoCKkB0xoYI7V8VG1wQ-eKEPC42gBtoMYE4KR6Vso1ACjC1NPqhNCGMibppprOUEw3rkd7N3apRT5lNHYOhdbFMfhgzRhSRMmjcoi2yymGH2vJee_sWFCIaD_1Y7CdiXEWOt-mC3Qbxg6ZiMww9HcaY0JuCL0byuF59cSbvrgXx_e0-vbx_Ov2U3355eLz9uyytozzsW6FUU5JKpncWYOF8lZKQxm0ymOnWjDKGM6dlCC5U4ZbDy0hSuwUbpWw9LT6sOoO027vWjt7yqbXQw57kw86maB_78TQ6at0oynnGCSdBd4eBXL6Prky6n0o1vW9iS5NRWM-74Y5E_BvlArCiaBS_AfKGqGAkEX19R_odZpynI-2ULRRnOGFwitlcyolO39vEYNeoqLXqOg5KnqJipbzzKuHt7mfuMvGDLw5AqZY0_tsog3lFyc4oQwvbsjKlbkVr1x-sOJff_8JL-LXQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1353496510</pqid></control><display><type>article</type><title>A novel method for the identification of synchronization effects in multichannel ECoG with an application to epilepsy</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Graef, A. ; Hartmann, M. ; Flamm, C. ; Baumgartner, C. ; Deistler, M. ; Kluge, T.</creator><creatorcontrib>Graef, A. ; Hartmann, M. ; Flamm, C. ; Baumgartner, C. ; Deistler, M. ; Kluge, T.</creatorcontrib><description>In this paper, we present a novel method for the identification of synchronization effects in multichannel electrocorticograms (ECoG). Based on autoregressive modeling, we define a dependency measure termed extrinsic-to-intrinsic power ratio (EIPR) which quantifies directed coupling effects in the time domain. Hereby, a dynamic input channel selection algorithm assures the estimation of the model parameters despite the strong spatial correlation among the high number of involved ECoG channels. We compare EIPR to the partial directed coherence, show its ability to indicate Granger causality and successfully validate a signal model. Applying EIPR to ictal ECoG data of patients suffering from temporal lobe epilepsy allows us to identify the electrodes of the seizure onset zone. The results obtained by the proposed method are in good accordance with the clinical findings.</description><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-013-0552-8</identifier><identifier>PMID: 23435583</identifier><identifier>CODEN: BICYAF</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain Mapping ; Channels ; Complex Systems ; Computer Appl. in Life Sciences ; Convulsions & seizures ; Electrodes ; Electroencephalography ; Electroencephalography Phase Synchronization - physiology ; Epilepsy ; Epilepsy - diagnosis ; Epilepsy - physiopathology ; Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy ; Humans ; Medical imaging ; Medical sciences ; Models, Biological ; Multichannel ; Nervous system (semeiology, syndromes) ; Neurobiology ; Neurology ; Neurosciences ; Nonlinear Dynamics ; Original Paper ; Patients ; Regression Analysis ; Synchronism ; Synchronization</subject><ispartof>Biological cybernetics, 2013-06, Vol.107 (3), p.321-335</ispartof><rights>The Author(s) 2013</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-d7a9e983858bca179fc88a350d9f1e9d0a9aa66e88086e9a6cf0d2297b91d97c3</citedby><cites>FETCH-LOGICAL-c566t-d7a9e983858bca179fc88a350d9f1e9d0a9aa66e88086e9a6cf0d2297b91d97c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00422-013-0552-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00422-013-0552-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27623517$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23435583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Graef, A.</creatorcontrib><creatorcontrib>Hartmann, M.</creatorcontrib><creatorcontrib>Flamm, C.</creatorcontrib><creatorcontrib>Baumgartner, C.</creatorcontrib><creatorcontrib>Deistler, M.</creatorcontrib><creatorcontrib>Kluge, T.</creatorcontrib><title>A novel method for the identification of synchronization effects in multichannel ECoG with an application to epilepsy</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><addtitle>Biol Cybern</addtitle><description>In this paper, we present a novel method for the identification of synchronization effects in multichannel electrocorticograms (ECoG). Based on autoregressive modeling, we define a dependency measure termed extrinsic-to-intrinsic power ratio (EIPR) which quantifies directed coupling effects in the time domain. Hereby, a dynamic input channel selection algorithm assures the estimation of the model parameters despite the strong spatial correlation among the high number of involved ECoG channels. We compare EIPR to the partial directed coherence, show its ability to indicate Granger causality and successfully validate a signal model. Applying EIPR to ictal ECoG data of patients suffering from temporal lobe epilepsy allows us to identify the electrodes of the seizure onset zone. The results obtained by the proposed method are in good accordance with the clinical findings.</description><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain Mapping</subject><subject>Channels</subject><subject>Complex Systems</subject><subject>Computer Appl. in Life Sciences</subject><subject>Convulsions & seizures</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Electroencephalography Phase Synchronization - physiology</subject><subject>Epilepsy</subject><subject>Epilepsy - diagnosis</subject><subject>Epilepsy - physiopathology</subject><subject>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</subject><subject>Humans</subject><subject>Medical imaging</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>Multichannel</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Nonlinear Dynamics</subject><subject>Original Paper</subject><subject>Patients</subject><subject>Regression Analysis</subject><subject>Synchronism</subject><subject>Synchronization</subject><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl9rFTEQxRdR7LX6AXyRgAi-rE6Szb8XoVxqFQq-6HPIzSbdlL3Jmuy2XD-9u-xtrYLoU2DmNydzhlNVLzG8wwDifQFoCKkB0xoYI7V8VG1wQ-eKEPC42gBtoMYE4KR6Vso1ACjC1NPqhNCGMibppprOUEw3rkd7N3apRT5lNHYOhdbFMfhgzRhSRMmjcoi2yymGH2vJee_sWFCIaD_1Y7CdiXEWOt-mC3Qbxg6ZiMww9HcaY0JuCL0byuF59cSbvrgXx_e0-vbx_Ov2U3355eLz9uyytozzsW6FUU5JKpncWYOF8lZKQxm0ymOnWjDKGM6dlCC5U4ZbDy0hSuwUbpWw9LT6sOoO027vWjt7yqbXQw57kw86maB_78TQ6at0oynnGCSdBd4eBXL6Prky6n0o1vW9iS5NRWM-74Y5E_BvlArCiaBS_AfKGqGAkEX19R_odZpynI-2ULRRnOGFwitlcyolO39vEYNeoqLXqOg5KnqJipbzzKuHt7mfuMvGDLw5AqZY0_tsog3lFyc4oQwvbsjKlbkVr1x-sOJff_8JL-LXQg</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Graef, A.</creator><creator>Hartmann, M.</creator><creator>Flamm, C.</creator><creator>Baumgartner, C.</creator><creator>Deistler, M.</creator><creator>Kluge, T.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130601</creationdate><title>A novel method for the identification of synchronization effects in multichannel ECoG with an application to epilepsy</title><author>Graef, A. ; Hartmann, M. ; Flamm, C. ; Baumgartner, C. ; Deistler, M. ; Kluge, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-d7a9e983858bca179fc88a350d9f1e9d0a9aa66e88086e9a6cf0d2297b91d97c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain Mapping</topic><topic>Channels</topic><topic>Complex Systems</topic><topic>Computer Appl. in Life Sciences</topic><topic>Convulsions & seizures</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Electroencephalography Phase Synchronization - physiology</topic><topic>Epilepsy</topic><topic>Epilepsy - diagnosis</topic><topic>Epilepsy - physiopathology</topic><topic>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</topic><topic>Humans</topic><topic>Medical imaging</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>Multichannel</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Nonlinear Dynamics</topic><topic>Original Paper</topic><topic>Patients</topic><topic>Regression Analysis</topic><topic>Synchronism</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graef, A.</creatorcontrib><creatorcontrib>Hartmann, M.</creatorcontrib><creatorcontrib>Flamm, C.</creatorcontrib><creatorcontrib>Baumgartner, C.</creatorcontrib><creatorcontrib>Deistler, M.</creatorcontrib><creatorcontrib>Kluge, T.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graef, A.</au><au>Hartmann, M.</au><au>Flamm, C.</au><au>Baumgartner, C.</au><au>Deistler, M.</au><au>Kluge, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel method for the identification of synchronization effects in multichannel ECoG with an application to epilepsy</atitle><jtitle>Biological cybernetics</jtitle><stitle>Biol Cybern</stitle><addtitle>Biol Cybern</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>107</volume><issue>3</issue><spage>321</spage><epage>335</epage><pages>321-335</pages><issn>0340-1200</issn><eissn>1432-0770</eissn><coden>BICYAF</coden><abstract>In this paper, we present a novel method for the identification of synchronization effects in multichannel electrocorticograms (ECoG). Based on autoregressive modeling, we define a dependency measure termed extrinsic-to-intrinsic power ratio (EIPR) which quantifies directed coupling effects in the time domain. Hereby, a dynamic input channel selection algorithm assures the estimation of the model parameters despite the strong spatial correlation among the high number of involved ECoG channels. We compare EIPR to the partial directed coherence, show its ability to indicate Granger causality and successfully validate a signal model. Applying EIPR to ictal ECoG data of patients suffering from temporal lobe epilepsy allows us to identify the electrodes of the seizure onset zone. The results obtained by the proposed method are in good accordance with the clinical findings.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23435583</pmid><doi>10.1007/s00422-013-0552-8</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-1200 |
ispartof | Biological cybernetics, 2013-06, Vol.107 (3), p.321-335 |
issn | 0340-1200 1432-0770 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3661083 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Bioinformatics Biological and medical sciences Biomedical and Life Sciences Biomedicine Brain Brain Mapping Channels Complex Systems Computer Appl. in Life Sciences Convulsions & seizures Electrodes Electroencephalography Electroencephalography Phase Synchronization - physiology Epilepsy Epilepsy - diagnosis Epilepsy - physiopathology Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy Humans Medical imaging Medical sciences Models, Biological Multichannel Nervous system (semeiology, syndromes) Neurobiology Neurology Neurosciences Nonlinear Dynamics Original Paper Patients Regression Analysis Synchronism Synchronization |
title | A novel method for the identification of synchronization effects in multichannel ECoG with an application to epilepsy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20method%20for%20the%20identification%20of%20synchronization%20effects%20in%20multichannel%20ECoG%20with%20an%20application%20to%20epilepsy&rft.jtitle=Biological%20cybernetics&rft.au=Graef,%20A.&rft.date=2013-06-01&rft.volume=107&rft.issue=3&rft.spage=321&rft.epage=335&rft.pages=321-335&rft.issn=0340-1200&rft.eissn=1432-0770&rft.coden=BICYAF&rft_id=info:doi/10.1007/s00422-013-0552-8&rft_dat=%3Cproquest_pubme%3E1372627387%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1353496510&rft_id=info:pmid/23435583&rfr_iscdi=true |