In vivo synaptic scaling is mediated by GluA2-lacking AMPA receptors in the embryonic spinal cord

When spiking activity within a network is perturbed for hours to days, compensatory changes in synaptic strength are triggered that are thought to be important for the homeostatic maintenance of network or cellular spiking activity. In one form of this homeostatic plasticity, called synaptic scaling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2013-04, Vol.33 (16), p.6791-6799
Hauptverfasser: Garcia-Bereguiain, Miguel Angel, Gonzalez-Islas, Carlos, Lindsly, Casie, Butler, Ellie, Hill, Atlantis Wilkins, Wenner, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6799
container_issue 16
container_start_page 6791
container_title The Journal of neuroscience
container_volume 33
creator Garcia-Bereguiain, Miguel Angel
Gonzalez-Islas, Carlos
Lindsly, Casie
Butler, Ellie
Hill, Atlantis Wilkins
Wenner, Peter
description When spiking activity within a network is perturbed for hours to days, compensatory changes in synaptic strength are triggered that are thought to be important for the homeostatic maintenance of network or cellular spiking activity. In one form of this homeostatic plasticity, called synaptic scaling, all of a cell's AMPAergic miniature postsynaptic currents (mEPSCs) are increased or decreased by some scaling factor. Although synaptic scaling has been observed in a variety of systems, the mechanisms that underlie AMPAergic scaling have been controversial. Certain studies find that synaptic scaling is mediated by GluA2-lacking calcium receptors (CP-AMPARs), whereas others have found that scaling is mediated by GluA2-containing calcium-impermeable receptors (CI-AMPARs). Spontaneous network activity is observed in most developing circuits, and in the spinal cord this activity drives embryonic movements. Blocking spontaneous network activity in the chick embryo by infusing lidocaine in vivo triggers synaptic scaling in spinal motoneurons; here we show that AMPAergic scaling occurs through increases in mEPSC conductance that appear to be mediated by the insertion of GluA2-lacking AMPA receptors at the expense of GluA2-containing receptors. We have previously reported that in vivo blockade of GABAA transmission, at a developmental stage when GABA is excitatory, also triggered AMPAergic synaptic scaling. Here, we show that this form of AMPAergic scaling is also mediated by CP-AMPARs. These findings suggest that AMPAergic scaling triggered by blocking spiking activity or GABAA receptor transmission represents similar phenomena, supporting the idea that activity blockade triggers scaling by reducing GABAA transmission.
doi_str_mv 10.1523/JNEUROSCI.4025-12.2013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3661002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551617453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-6bad8380a96d95188087bee4bd4ddd05e39183d1b2b43eba86e07b97f7f177093</originalsourceid><addsrcrecordid>eNpVkctOGzEUhq2KqgTaV0Bespn02B6PxxukKOISREvVlrXlW8BlYg_2JFLevjOCRnR1Fv_l_NKH0BmBOeGUfb39fvnw8_7XcjWvgfKK0DkFwj6g2ajKitZAjtAMqICqqUV9jE5K-QMAAoj4hI4p45IL1s6QXkW8C7uEyz7qfggWF6u7EB9xKHjjXdCDd9js8XW3XdCq0_Z5Ehfffixw9tb3Q8oFh4iHJ4_9xuR9ilNJH6LusE3ZfUYf17or_svbPUUPV5e_lzfV3f31arm4qyyTcqgao13LWtCycZKTtoVWGO9r42rnHHDPJGmZI4aamnmj28aDMFKsxZoIAZKdoovX3n5rxuHWxyHrTvU5bHTeq6SD-l-J4Uk9pp1iTUMA6Fhw_laQ08vWl0FtQrG-63T0aVsU4Zw0RNScjdbm1WpzKiX79eENATXxUQc-auKjCFUTnzF49n7kIfYPCPsLyquOCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551617453</pqid></control><display><type>article</type><title>In vivo synaptic scaling is mediated by GluA2-lacking AMPA receptors in the embryonic spinal cord</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Garcia-Bereguiain, Miguel Angel ; Gonzalez-Islas, Carlos ; Lindsly, Casie ; Butler, Ellie ; Hill, Atlantis Wilkins ; Wenner, Peter</creator><creatorcontrib>Garcia-Bereguiain, Miguel Angel ; Gonzalez-Islas, Carlos ; Lindsly, Casie ; Butler, Ellie ; Hill, Atlantis Wilkins ; Wenner, Peter</creatorcontrib><description>When spiking activity within a network is perturbed for hours to days, compensatory changes in synaptic strength are triggered that are thought to be important for the homeostatic maintenance of network or cellular spiking activity. In one form of this homeostatic plasticity, called synaptic scaling, all of a cell's AMPAergic miniature postsynaptic currents (mEPSCs) are increased or decreased by some scaling factor. Although synaptic scaling has been observed in a variety of systems, the mechanisms that underlie AMPAergic scaling have been controversial. Certain studies find that synaptic scaling is mediated by GluA2-lacking calcium receptors (CP-AMPARs), whereas others have found that scaling is mediated by GluA2-containing calcium-impermeable receptors (CI-AMPARs). Spontaneous network activity is observed in most developing circuits, and in the spinal cord this activity drives embryonic movements. Blocking spontaneous network activity in the chick embryo by infusing lidocaine in vivo triggers synaptic scaling in spinal motoneurons; here we show that AMPAergic scaling occurs through increases in mEPSC conductance that appear to be mediated by the insertion of GluA2-lacking AMPA receptors at the expense of GluA2-containing receptors. We have previously reported that in vivo blockade of GABAA transmission, at a developmental stage when GABA is excitatory, also triggered AMPAergic synaptic scaling. Here, we show that this form of AMPAergic scaling is also mediated by CP-AMPARs. These findings suggest that AMPAergic scaling triggered by blocking spiking activity or GABAA receptor transmission represents similar phenomena, supporting the idea that activity blockade triggers scaling by reducing GABAA transmission.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.4025-12.2013</identifier><identifier>PMID: 23595738</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Anesthetics, Local - pharmacology ; Animals ; Biophysics ; Chick Embryo ; Electric Stimulation ; Excitatory Amino Acid Antagonists - pharmacology ; Excitatory Postsynaptic Potentials - physiology ; GABA Antagonists - pharmacology ; Gene Expression Regulation, Developmental - physiology ; Lidocaine - pharmacology ; Motor Neurons - physiology ; Patch-Clamp Techniques ; Pyridazines - pharmacology ; Receptors, AMPA - deficiency ; Spinal Cord - cytology ; Spinal Cord - embryology ; Spinal Cord - metabolism ; Synapses - drug effects ; Synapses - physiology ; Tetrodotoxin - pharmacology</subject><ispartof>The Journal of neuroscience, 2013-04, Vol.33 (16), p.6791-6799</ispartof><rights>Copyright © 2013 the authors 0270-6474/13/336791-09$15.00/0 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-6bad8380a96d95188087bee4bd4ddd05e39183d1b2b43eba86e07b97f7f177093</citedby><cites>FETCH-LOGICAL-c399t-6bad8380a96d95188087bee4bd4ddd05e39183d1b2b43eba86e07b97f7f177093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661002/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661002/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23595738$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia-Bereguiain, Miguel Angel</creatorcontrib><creatorcontrib>Gonzalez-Islas, Carlos</creatorcontrib><creatorcontrib>Lindsly, Casie</creatorcontrib><creatorcontrib>Butler, Ellie</creatorcontrib><creatorcontrib>Hill, Atlantis Wilkins</creatorcontrib><creatorcontrib>Wenner, Peter</creatorcontrib><title>In vivo synaptic scaling is mediated by GluA2-lacking AMPA receptors in the embryonic spinal cord</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>When spiking activity within a network is perturbed for hours to days, compensatory changes in synaptic strength are triggered that are thought to be important for the homeostatic maintenance of network or cellular spiking activity. In one form of this homeostatic plasticity, called synaptic scaling, all of a cell's AMPAergic miniature postsynaptic currents (mEPSCs) are increased or decreased by some scaling factor. Although synaptic scaling has been observed in a variety of systems, the mechanisms that underlie AMPAergic scaling have been controversial. Certain studies find that synaptic scaling is mediated by GluA2-lacking calcium receptors (CP-AMPARs), whereas others have found that scaling is mediated by GluA2-containing calcium-impermeable receptors (CI-AMPARs). Spontaneous network activity is observed in most developing circuits, and in the spinal cord this activity drives embryonic movements. Blocking spontaneous network activity in the chick embryo by infusing lidocaine in vivo triggers synaptic scaling in spinal motoneurons; here we show that AMPAergic scaling occurs through increases in mEPSC conductance that appear to be mediated by the insertion of GluA2-lacking AMPA receptors at the expense of GluA2-containing receptors. We have previously reported that in vivo blockade of GABAA transmission, at a developmental stage when GABA is excitatory, also triggered AMPAergic synaptic scaling. Here, we show that this form of AMPAergic scaling is also mediated by CP-AMPARs. These findings suggest that AMPAergic scaling triggered by blocking spiking activity or GABAA receptor transmission represents similar phenomena, supporting the idea that activity blockade triggers scaling by reducing GABAA transmission.</description><subject>Anesthetics, Local - pharmacology</subject><subject>Animals</subject><subject>Biophysics</subject><subject>Chick Embryo</subject><subject>Electric Stimulation</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>GABA Antagonists - pharmacology</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Lidocaine - pharmacology</subject><subject>Motor Neurons - physiology</subject><subject>Patch-Clamp Techniques</subject><subject>Pyridazines - pharmacology</subject><subject>Receptors, AMPA - deficiency</subject><subject>Spinal Cord - cytology</subject><subject>Spinal Cord - embryology</subject><subject>Spinal Cord - metabolism</subject><subject>Synapses - drug effects</subject><subject>Synapses - physiology</subject><subject>Tetrodotoxin - pharmacology</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctOGzEUhq2KqgTaV0Bespn02B6PxxukKOISREvVlrXlW8BlYg_2JFLevjOCRnR1Fv_l_NKH0BmBOeGUfb39fvnw8_7XcjWvgfKK0DkFwj6g2ajKitZAjtAMqICqqUV9jE5K-QMAAoj4hI4p45IL1s6QXkW8C7uEyz7qfggWF6u7EB9xKHjjXdCDd9js8XW3XdCq0_Z5Ehfffixw9tb3Q8oFh4iHJ4_9xuR9ilNJH6LusE3ZfUYf17or_svbPUUPV5e_lzfV3f31arm4qyyTcqgao13LWtCycZKTtoVWGO9r42rnHHDPJGmZI4aamnmj28aDMFKsxZoIAZKdoovX3n5rxuHWxyHrTvU5bHTeq6SD-l-J4Uk9pp1iTUMA6Fhw_laQ08vWl0FtQrG-63T0aVsU4Zw0RNScjdbm1WpzKiX79eENATXxUQc-auKjCFUTnzF49n7kIfYPCPsLyquOCw</recordid><startdate>20130417</startdate><enddate>20130417</enddate><creator>Garcia-Bereguiain, Miguel Angel</creator><creator>Gonzalez-Islas, Carlos</creator><creator>Lindsly, Casie</creator><creator>Butler, Ellie</creator><creator>Hill, Atlantis Wilkins</creator><creator>Wenner, Peter</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20130417</creationdate><title>In vivo synaptic scaling is mediated by GluA2-lacking AMPA receptors in the embryonic spinal cord</title><author>Garcia-Bereguiain, Miguel Angel ; Gonzalez-Islas, Carlos ; Lindsly, Casie ; Butler, Ellie ; Hill, Atlantis Wilkins ; Wenner, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-6bad8380a96d95188087bee4bd4ddd05e39183d1b2b43eba86e07b97f7f177093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anesthetics, Local - pharmacology</topic><topic>Animals</topic><topic>Biophysics</topic><topic>Chick Embryo</topic><topic>Electric Stimulation</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>GABA Antagonists - pharmacology</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Lidocaine - pharmacology</topic><topic>Motor Neurons - physiology</topic><topic>Patch-Clamp Techniques</topic><topic>Pyridazines - pharmacology</topic><topic>Receptors, AMPA - deficiency</topic><topic>Spinal Cord - cytology</topic><topic>Spinal Cord - embryology</topic><topic>Spinal Cord - metabolism</topic><topic>Synapses - drug effects</topic><topic>Synapses - physiology</topic><topic>Tetrodotoxin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Bereguiain, Miguel Angel</creatorcontrib><creatorcontrib>Gonzalez-Islas, Carlos</creatorcontrib><creatorcontrib>Lindsly, Casie</creatorcontrib><creatorcontrib>Butler, Ellie</creatorcontrib><creatorcontrib>Hill, Atlantis Wilkins</creatorcontrib><creatorcontrib>Wenner, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia-Bereguiain, Miguel Angel</au><au>Gonzalez-Islas, Carlos</au><au>Lindsly, Casie</au><au>Butler, Ellie</au><au>Hill, Atlantis Wilkins</au><au>Wenner, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo synaptic scaling is mediated by GluA2-lacking AMPA receptors in the embryonic spinal cord</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2013-04-17</date><risdate>2013</risdate><volume>33</volume><issue>16</issue><spage>6791</spage><epage>6799</epage><pages>6791-6799</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>When spiking activity within a network is perturbed for hours to days, compensatory changes in synaptic strength are triggered that are thought to be important for the homeostatic maintenance of network or cellular spiking activity. In one form of this homeostatic plasticity, called synaptic scaling, all of a cell's AMPAergic miniature postsynaptic currents (mEPSCs) are increased or decreased by some scaling factor. Although synaptic scaling has been observed in a variety of systems, the mechanisms that underlie AMPAergic scaling have been controversial. Certain studies find that synaptic scaling is mediated by GluA2-lacking calcium receptors (CP-AMPARs), whereas others have found that scaling is mediated by GluA2-containing calcium-impermeable receptors (CI-AMPARs). Spontaneous network activity is observed in most developing circuits, and in the spinal cord this activity drives embryonic movements. Blocking spontaneous network activity in the chick embryo by infusing lidocaine in vivo triggers synaptic scaling in spinal motoneurons; here we show that AMPAergic scaling occurs through increases in mEPSC conductance that appear to be mediated by the insertion of GluA2-lacking AMPA receptors at the expense of GluA2-containing receptors. We have previously reported that in vivo blockade of GABAA transmission, at a developmental stage when GABA is excitatory, also triggered AMPAergic synaptic scaling. Here, we show that this form of AMPAergic scaling is also mediated by CP-AMPARs. These findings suggest that AMPAergic scaling triggered by blocking spiking activity or GABAA receptor transmission represents similar phenomena, supporting the idea that activity blockade triggers scaling by reducing GABAA transmission.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>23595738</pmid><doi>10.1523/JNEUROSCI.4025-12.2013</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2013-04, Vol.33 (16), p.6791-6799
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3661002
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Anesthetics, Local - pharmacology
Animals
Biophysics
Chick Embryo
Electric Stimulation
Excitatory Amino Acid Antagonists - pharmacology
Excitatory Postsynaptic Potentials - physiology
GABA Antagonists - pharmacology
Gene Expression Regulation, Developmental - physiology
Lidocaine - pharmacology
Motor Neurons - physiology
Patch-Clamp Techniques
Pyridazines - pharmacology
Receptors, AMPA - deficiency
Spinal Cord - cytology
Spinal Cord - embryology
Spinal Cord - metabolism
Synapses - drug effects
Synapses - physiology
Tetrodotoxin - pharmacology
title In vivo synaptic scaling is mediated by GluA2-lacking AMPA receptors in the embryonic spinal cord
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20synaptic%20scaling%20is%20mediated%20by%20GluA2-lacking%20AMPA%20receptors%20in%20the%20embryonic%20spinal%20cord&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Garcia-Bereguiain,%20Miguel%20Angel&rft.date=2013-04-17&rft.volume=33&rft.issue=16&rft.spage=6791&rft.epage=6799&rft.pages=6791-6799&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.4025-12.2013&rft_dat=%3Cproquest_pubme%3E1551617453%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551617453&rft_id=info:pmid/23595738&rfr_iscdi=true