Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades

Many reef-building corals form symbioses with dinoflagellates from the diverse genus Symbiodinium. There is increasing evidence of functional significance to Symbiodinium diversity, which affects the coral holobiont’s response to changing environmental conditions. For example, corals hosting Symbiod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2013-06, Vol.7 (6), p.1248-1251
Hauptverfasser: Baker, David M, Andras, Jason P, Jordán-Garza, Adán Guillermo, Fogel, Marilyn L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1251
container_issue 6
container_start_page 1248
container_title The ISME Journal
container_volume 7
creator Baker, David M
Andras, Jason P
Jordán-Garza, Adán Guillermo
Fogel, Marilyn L
description Many reef-building corals form symbioses with dinoflagellates from the diverse genus Symbiodinium. There is increasing evidence of functional significance to Symbiodinium diversity, which affects the coral holobiont’s response to changing environmental conditions. For example, corals hosting Symbiodinium from the clade D taxon exhibit greater resistance to heat-induced coral bleaching than conspecifics hosting the more common clade C. Yet, the relatively low prevalence of clade D suggests that this trait is not advantageous in non-stressful environments. Thus, clade D may only be able to out-compete other Symbiodinium types within the host habitat when conditions are chronically stressful. Previous studies have observed enhanced photosynthesis and fitness by clade C holobionts at non-stressful temperatures, relative to clade D. Yet, carbon-centered metrics cannot account for enhanced growth rates and patterns of symbiont succession to other genetic types when nitrogen often limits reef productivity. To investigate the metabolic costs of hosting thermally tolerant symbionts, we examined the assimilation and translocation of inorganic 15 N and 13 C in the coral Acropora tenuis experimentally infected with either clade C (sub-type C1) or D Symbiodinium at 28 and 30 °C. We show that at 28 °C, C1 holobionts acquired 22% more 15 N than clade D. However, at 30 °C, C1 symbionts acquired equivalent nitrogen and 16% less carbon than D. We hypothesize that C1 competitively excludes clade D in hospite via enhanced nitrogen acquisition and thus dominates coral populations despite warming oceans.
doi_str_mv 10.1038/ismej.2013.12
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3660672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1353986222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-112a09a55d46bee68e2cca777bc6511166dd38ab9a2fdf8c9f2a279a4a0dd4053</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EoqVw5IosceGSxR-xnVyQUMVHpQoOwIWLNbEnW6-SeLGTVv33eHfLqlRInGx5Hj-e8UvIS85WnMnmbcgjblaCcbni4hE55UbxykjDHh_3WpyQZzlvGFNGa_OUnAhZMyM5PyU_v4Q5wYzUxXGLc5hDnGiYKJSDBAPNt2MXYg6ZXkMKmOlNmK_ojAUu15aEFMY4rem3PefDFJaRugE85ufkSQ9Dxhd36xn58fHD9_PP1eXXTxfn7y8rVzdmrjgXwFpQyte6Q9QNCufAGNM5rTjnWnsvG-haEL3vG9f2AoRpoQbmfc2UPCPvDt7t0o3oHU5losFuUxgh3doIwf5dmcKVXcdrK7Vm2ogieHMnSPHXgnm2Y8gOhwEmjEu2vFaNEtoo9X9UKtk2Woid9fUDdBOXNJWf2FNSlNbrQlUHyqWYc8L-2Ddndhew3QdsdwFbvrO-uj_skf6TaAFWByCX0rTGdO_Zfxp_A5lHs0o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1353320534</pqid></control><display><type>article</type><title>Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Baker, David M ; Andras, Jason P ; Jordán-Garza, Adán Guillermo ; Fogel, Marilyn L</creator><creatorcontrib>Baker, David M ; Andras, Jason P ; Jordán-Garza, Adán Guillermo ; Fogel, Marilyn L</creatorcontrib><description>Many reef-building corals form symbioses with dinoflagellates from the diverse genus Symbiodinium. There is increasing evidence of functional significance to Symbiodinium diversity, which affects the coral holobiont’s response to changing environmental conditions. For example, corals hosting Symbiodinium from the clade D taxon exhibit greater resistance to heat-induced coral bleaching than conspecifics hosting the more common clade C. Yet, the relatively low prevalence of clade D suggests that this trait is not advantageous in non-stressful environments. Thus, clade D may only be able to out-compete other Symbiodinium types within the host habitat when conditions are chronically stressful. Previous studies have observed enhanced photosynthesis and fitness by clade C holobionts at non-stressful temperatures, relative to clade D. Yet, carbon-centered metrics cannot account for enhanced growth rates and patterns of symbiont succession to other genetic types when nitrogen often limits reef productivity. To investigate the metabolic costs of hosting thermally tolerant symbionts, we examined the assimilation and translocation of inorganic 15 N and 13 C in the coral Acropora tenuis experimentally infected with either clade C (sub-type C1) or D Symbiodinium at 28 and 30 °C. We show that at 28 °C, C1 holobionts acquired 22% more 15 N than clade D. However, at 30 °C, C1 symbionts acquired equivalent nitrogen and 16% less carbon than D. We hypothesize that C1 competitively excludes clade D in hospite via enhanced nitrogen acquisition and thus dominates coral populations despite warming oceans.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2013.12</identifier><identifier>PMID: 23407311</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/855 ; 631/326/2565/547 ; Acropora tenuis ; Animals ; Anthozoa - classification ; Anthozoa - growth &amp; development ; Anthozoa - physiology ; Biomedical and Life Sciences ; Carbon ; Carbon - metabolism ; Conspecifics ; Coral bleaching ; Coral Reefs ; Dinoflagellida - genetics ; Dinoflagellida - physiology ; Ecology ; Environmental changes ; Environmental conditions ; Evolutionary Biology ; Growth rate ; Life Sciences ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Nitrates - metabolism ; Nitrogen ; Ocean warming ; Oceans ; Oceans and Seas ; Photosynthesis ; Short Communication ; Symbiodinium ; Symbiosis ; Taxa ; Temperature ; Translocation</subject><ispartof>The ISME Journal, 2013-06, Vol.7 (6), p.1248-1251</ispartof><rights>International Society for Microbial Ecology 2013</rights><rights>Copyright Nature Publishing Group Jun 2013</rights><rights>Copyright © 2013 International Society for Microbial Ecology 2013 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-112a09a55d46bee68e2cca777bc6511166dd38ab9a2fdf8c9f2a279a4a0dd4053</citedby><cites>FETCH-LOGICAL-c487t-112a09a55d46bee68e2cca777bc6511166dd38ab9a2fdf8c9f2a279a4a0dd4053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660672/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660672/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23407311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baker, David M</creatorcontrib><creatorcontrib>Andras, Jason P</creatorcontrib><creatorcontrib>Jordán-Garza, Adán Guillermo</creatorcontrib><creatorcontrib>Fogel, Marilyn L</creatorcontrib><title>Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Many reef-building corals form symbioses with dinoflagellates from the diverse genus Symbiodinium. There is increasing evidence of functional significance to Symbiodinium diversity, which affects the coral holobiont’s response to changing environmental conditions. For example, corals hosting Symbiodinium from the clade D taxon exhibit greater resistance to heat-induced coral bleaching than conspecifics hosting the more common clade C. Yet, the relatively low prevalence of clade D suggests that this trait is not advantageous in non-stressful environments. Thus, clade D may only be able to out-compete other Symbiodinium types within the host habitat when conditions are chronically stressful. Previous studies have observed enhanced photosynthesis and fitness by clade C holobionts at non-stressful temperatures, relative to clade D. Yet, carbon-centered metrics cannot account for enhanced growth rates and patterns of symbiont succession to other genetic types when nitrogen often limits reef productivity. To investigate the metabolic costs of hosting thermally tolerant symbionts, we examined the assimilation and translocation of inorganic 15 N and 13 C in the coral Acropora tenuis experimentally infected with either clade C (sub-type C1) or D Symbiodinium at 28 and 30 °C. We show that at 28 °C, C1 holobionts acquired 22% more 15 N than clade D. However, at 30 °C, C1 symbionts acquired equivalent nitrogen and 16% less carbon than D. We hypothesize that C1 competitively excludes clade D in hospite via enhanced nitrogen acquisition and thus dominates coral populations despite warming oceans.</description><subject>631/158/855</subject><subject>631/326/2565/547</subject><subject>Acropora tenuis</subject><subject>Animals</subject><subject>Anthozoa - classification</subject><subject>Anthozoa - growth &amp; development</subject><subject>Anthozoa - physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Conspecifics</subject><subject>Coral bleaching</subject><subject>Coral Reefs</subject><subject>Dinoflagellida - genetics</subject><subject>Dinoflagellida - physiology</subject><subject>Ecology</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Evolutionary Biology</subject><subject>Growth rate</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Nitrates - metabolism</subject><subject>Nitrogen</subject><subject>Ocean warming</subject><subject>Oceans</subject><subject>Oceans and Seas</subject><subject>Photosynthesis</subject><subject>Short Communication</subject><subject>Symbiodinium</subject><subject>Symbiosis</subject><subject>Taxa</subject><subject>Temperature</subject><subject>Translocation</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1v1DAQhi0EoqVw5IosceGSxR-xnVyQUMVHpQoOwIWLNbEnW6-SeLGTVv33eHfLqlRInGx5Hj-e8UvIS85WnMnmbcgjblaCcbni4hE55UbxykjDHh_3WpyQZzlvGFNGa_OUnAhZMyM5PyU_v4Q5wYzUxXGLc5hDnGiYKJSDBAPNt2MXYg6ZXkMKmOlNmK_ojAUu15aEFMY4rem3PefDFJaRugE85ufkSQ9Dxhd36xn58fHD9_PP1eXXTxfn7y8rVzdmrjgXwFpQyte6Q9QNCufAGNM5rTjnWnsvG-haEL3vG9f2AoRpoQbmfc2UPCPvDt7t0o3oHU5losFuUxgh3doIwf5dmcKVXcdrK7Vm2ogieHMnSPHXgnm2Y8gOhwEmjEu2vFaNEtoo9X9UKtk2Woid9fUDdBOXNJWf2FNSlNbrQlUHyqWYc8L-2Ddndhew3QdsdwFbvrO-uj_skf6TaAFWByCX0rTGdO_Zfxp_A5lHs0o</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Baker, David M</creator><creator>Andras, Jason P</creator><creator>Jordán-Garza, Adán Guillermo</creator><creator>Fogel, Marilyn L</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20130601</creationdate><title>Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades</title><author>Baker, David M ; Andras, Jason P ; Jordán-Garza, Adán Guillermo ; Fogel, Marilyn L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-112a09a55d46bee68e2cca777bc6511166dd38ab9a2fdf8c9f2a279a4a0dd4053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/158/855</topic><topic>631/326/2565/547</topic><topic>Acropora tenuis</topic><topic>Animals</topic><topic>Anthozoa - classification</topic><topic>Anthozoa - growth &amp; development</topic><topic>Anthozoa - physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Conspecifics</topic><topic>Coral bleaching</topic><topic>Coral Reefs</topic><topic>Dinoflagellida - genetics</topic><topic>Dinoflagellida - physiology</topic><topic>Ecology</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Evolutionary Biology</topic><topic>Growth rate</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Nitrates - metabolism</topic><topic>Nitrogen</topic><topic>Ocean warming</topic><topic>Oceans</topic><topic>Oceans and Seas</topic><topic>Photosynthesis</topic><topic>Short Communication</topic><topic>Symbiodinium</topic><topic>Symbiosis</topic><topic>Taxa</topic><topic>Temperature</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, David M</creatorcontrib><creatorcontrib>Andras, Jason P</creatorcontrib><creatorcontrib>Jordán-Garza, Adán Guillermo</creatorcontrib><creatorcontrib>Fogel, Marilyn L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, David M</au><au>Andras, Jason P</au><au>Jordán-Garza, Adán Guillermo</au><au>Fogel, Marilyn L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>7</volume><issue>6</issue><spage>1248</spage><epage>1251</epage><pages>1248-1251</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Many reef-building corals form symbioses with dinoflagellates from the diverse genus Symbiodinium. There is increasing evidence of functional significance to Symbiodinium diversity, which affects the coral holobiont’s response to changing environmental conditions. For example, corals hosting Symbiodinium from the clade D taxon exhibit greater resistance to heat-induced coral bleaching than conspecifics hosting the more common clade C. Yet, the relatively low prevalence of clade D suggests that this trait is not advantageous in non-stressful environments. Thus, clade D may only be able to out-compete other Symbiodinium types within the host habitat when conditions are chronically stressful. Previous studies have observed enhanced photosynthesis and fitness by clade C holobionts at non-stressful temperatures, relative to clade D. Yet, carbon-centered metrics cannot account for enhanced growth rates and patterns of symbiont succession to other genetic types when nitrogen often limits reef productivity. To investigate the metabolic costs of hosting thermally tolerant symbionts, we examined the assimilation and translocation of inorganic 15 N and 13 C in the coral Acropora tenuis experimentally infected with either clade C (sub-type C1) or D Symbiodinium at 28 and 30 °C. We show that at 28 °C, C1 holobionts acquired 22% more 15 N than clade D. However, at 30 °C, C1 symbionts acquired equivalent nitrogen and 16% less carbon than D. We hypothesize that C1 competitively excludes clade D in hospite via enhanced nitrogen acquisition and thus dominates coral populations despite warming oceans.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23407311</pmid><doi>10.1038/ismej.2013.12</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2013-06, Vol.7 (6), p.1248-1251
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3660672
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central
subjects 631/158/855
631/326/2565/547
Acropora tenuis
Animals
Anthozoa - classification
Anthozoa - growth & development
Anthozoa - physiology
Biomedical and Life Sciences
Carbon
Carbon - metabolism
Conspecifics
Coral bleaching
Coral Reefs
Dinoflagellida - genetics
Dinoflagellida - physiology
Ecology
Environmental changes
Environmental conditions
Evolutionary Biology
Growth rate
Life Sciences
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Nitrates - metabolism
Nitrogen
Ocean warming
Oceans
Oceans and Seas
Photosynthesis
Short Communication
Symbiodinium
Symbiosis
Taxa
Temperature
Translocation
title Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrate%20competition%20in%20a%20coral%20symbiosis%20varies%20with%20temperature%20among%20Symbiodinium%20clades&rft.jtitle=The%20ISME%20Journal&rft.au=Baker,%20David%20M&rft.date=2013-06-01&rft.volume=7&rft.issue=6&rft.spage=1248&rft.epage=1251&rft.pages=1248-1251&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2013.12&rft_dat=%3Cproquest_pubme%3E1353986222%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1353320534&rft_id=info:pmid/23407311&rfr_iscdi=true