Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades
Many reef-building corals form symbioses with dinoflagellates from the diverse genus Symbiodinium. There is increasing evidence of functional significance to Symbiodinium diversity, which affects the coral holobiont’s response to changing environmental conditions. For example, corals hosting Symbiod...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2013-06, Vol.7 (6), p.1248-1251 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1251 |
---|---|
container_issue | 6 |
container_start_page | 1248 |
container_title | The ISME Journal |
container_volume | 7 |
creator | Baker, David M Andras, Jason P Jordán-Garza, Adán Guillermo Fogel, Marilyn L |
description | Many reef-building corals form symbioses with dinoflagellates from the diverse genus
Symbiodinium.
There is increasing evidence of functional significance to
Symbiodinium
diversity, which affects the coral holobiont’s response to changing environmental conditions. For example, corals hosting
Symbiodinium
from the clade D taxon exhibit greater resistance to heat-induced coral bleaching than conspecifics hosting the more common clade C. Yet, the relatively low prevalence of clade D suggests that this trait is not advantageous in non-stressful environments. Thus, clade D may only be able to out-compete other
Symbiodinium
types within the host habitat when conditions are chronically stressful. Previous studies have observed enhanced photosynthesis and fitness by clade C holobionts at non-stressful temperatures, relative to clade D. Yet, carbon-centered metrics cannot account for enhanced growth rates and patterns of symbiont succession to other genetic types when nitrogen often limits reef productivity. To investigate the metabolic costs of hosting thermally tolerant symbionts, we examined the assimilation and translocation of inorganic
15
N and
13
C in the coral
Acropora tenuis
experimentally infected with either clade C (sub-type C1) or D
Symbiodinium
at 28 and 30 °C. We show that at 28 °C, C1 holobionts acquired 22% more
15
N than clade D. However, at 30 °C, C1 symbionts acquired equivalent nitrogen and 16% less carbon than D. We hypothesize that C1 competitively excludes clade D
in hospite
via enhanced nitrogen acquisition and thus dominates coral populations despite warming oceans. |
doi_str_mv | 10.1038/ismej.2013.12 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3660672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1353986222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-112a09a55d46bee68e2cca777bc6511166dd38ab9a2fdf8c9f2a279a4a0dd4053</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EoqVw5IosceGSxR-xnVyQUMVHpQoOwIWLNbEnW6-SeLGTVv33eHfLqlRInGx5Hj-e8UvIS85WnMnmbcgjblaCcbni4hE55UbxykjDHh_3WpyQZzlvGFNGa_OUnAhZMyM5PyU_v4Q5wYzUxXGLc5hDnGiYKJSDBAPNt2MXYg6ZXkMKmOlNmK_ojAUu15aEFMY4rem3PefDFJaRugE85ufkSQ9Dxhd36xn58fHD9_PP1eXXTxfn7y8rVzdmrjgXwFpQyte6Q9QNCufAGNM5rTjnWnsvG-haEL3vG9f2AoRpoQbmfc2UPCPvDt7t0o3oHU5losFuUxgh3doIwf5dmcKVXcdrK7Vm2ogieHMnSPHXgnm2Y8gOhwEmjEu2vFaNEtoo9X9UKtk2Woid9fUDdBOXNJWf2FNSlNbrQlUHyqWYc8L-2Ddndhew3QdsdwFbvrO-uj_skf6TaAFWByCX0rTGdO_Zfxp_A5lHs0o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1353320534</pqid></control><display><type>article</type><title>Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Baker, David M ; Andras, Jason P ; Jordán-Garza, Adán Guillermo ; Fogel, Marilyn L</creator><creatorcontrib>Baker, David M ; Andras, Jason P ; Jordán-Garza, Adán Guillermo ; Fogel, Marilyn L</creatorcontrib><description>Many reef-building corals form symbioses with dinoflagellates from the diverse genus
Symbiodinium.
There is increasing evidence of functional significance to
Symbiodinium
diversity, which affects the coral holobiont’s response to changing environmental conditions. For example, corals hosting
Symbiodinium
from the clade D taxon exhibit greater resistance to heat-induced coral bleaching than conspecifics hosting the more common clade C. Yet, the relatively low prevalence of clade D suggests that this trait is not advantageous in non-stressful environments. Thus, clade D may only be able to out-compete other
Symbiodinium
types within the host habitat when conditions are chronically stressful. Previous studies have observed enhanced photosynthesis and fitness by clade C holobionts at non-stressful temperatures, relative to clade D. Yet, carbon-centered metrics cannot account for enhanced growth rates and patterns of symbiont succession to other genetic types when nitrogen often limits reef productivity. To investigate the metabolic costs of hosting thermally tolerant symbionts, we examined the assimilation and translocation of inorganic
15
N and
13
C in the coral
Acropora tenuis
experimentally infected with either clade C (sub-type C1) or D
Symbiodinium
at 28 and 30 °C. We show that at 28 °C, C1 holobionts acquired 22% more
15
N than clade D. However, at 30 °C, C1 symbionts acquired equivalent nitrogen and 16% less carbon than D. We hypothesize that C1 competitively excludes clade D
in hospite
via enhanced nitrogen acquisition and thus dominates coral populations despite warming oceans.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2013.12</identifier><identifier>PMID: 23407311</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/855 ; 631/326/2565/547 ; Acropora tenuis ; Animals ; Anthozoa - classification ; Anthozoa - growth & development ; Anthozoa - physiology ; Biomedical and Life Sciences ; Carbon ; Carbon - metabolism ; Conspecifics ; Coral bleaching ; Coral Reefs ; Dinoflagellida - genetics ; Dinoflagellida - physiology ; Ecology ; Environmental changes ; Environmental conditions ; Evolutionary Biology ; Growth rate ; Life Sciences ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Nitrates - metabolism ; Nitrogen ; Ocean warming ; Oceans ; Oceans and Seas ; Photosynthesis ; Short Communication ; Symbiodinium ; Symbiosis ; Taxa ; Temperature ; Translocation</subject><ispartof>The ISME Journal, 2013-06, Vol.7 (6), p.1248-1251</ispartof><rights>International Society for Microbial Ecology 2013</rights><rights>Copyright Nature Publishing Group Jun 2013</rights><rights>Copyright © 2013 International Society for Microbial Ecology 2013 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-112a09a55d46bee68e2cca777bc6511166dd38ab9a2fdf8c9f2a279a4a0dd4053</citedby><cites>FETCH-LOGICAL-c487t-112a09a55d46bee68e2cca777bc6511166dd38ab9a2fdf8c9f2a279a4a0dd4053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660672/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660672/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23407311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baker, David M</creatorcontrib><creatorcontrib>Andras, Jason P</creatorcontrib><creatorcontrib>Jordán-Garza, Adán Guillermo</creatorcontrib><creatorcontrib>Fogel, Marilyn L</creatorcontrib><title>Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Many reef-building corals form symbioses with dinoflagellates from the diverse genus
Symbiodinium.
There is increasing evidence of functional significance to
Symbiodinium
diversity, which affects the coral holobiont’s response to changing environmental conditions. For example, corals hosting
Symbiodinium
from the clade D taxon exhibit greater resistance to heat-induced coral bleaching than conspecifics hosting the more common clade C. Yet, the relatively low prevalence of clade D suggests that this trait is not advantageous in non-stressful environments. Thus, clade D may only be able to out-compete other
Symbiodinium
types within the host habitat when conditions are chronically stressful. Previous studies have observed enhanced photosynthesis and fitness by clade C holobionts at non-stressful temperatures, relative to clade D. Yet, carbon-centered metrics cannot account for enhanced growth rates and patterns of symbiont succession to other genetic types when nitrogen often limits reef productivity. To investigate the metabolic costs of hosting thermally tolerant symbionts, we examined the assimilation and translocation of inorganic
15
N and
13
C in the coral
Acropora tenuis
experimentally infected with either clade C (sub-type C1) or D
Symbiodinium
at 28 and 30 °C. We show that at 28 °C, C1 holobionts acquired 22% more
15
N than clade D. However, at 30 °C, C1 symbionts acquired equivalent nitrogen and 16% less carbon than D. We hypothesize that C1 competitively excludes clade D
in hospite
via enhanced nitrogen acquisition and thus dominates coral populations despite warming oceans.</description><subject>631/158/855</subject><subject>631/326/2565/547</subject><subject>Acropora tenuis</subject><subject>Animals</subject><subject>Anthozoa - classification</subject><subject>Anthozoa - growth & development</subject><subject>Anthozoa - physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Conspecifics</subject><subject>Coral bleaching</subject><subject>Coral Reefs</subject><subject>Dinoflagellida - genetics</subject><subject>Dinoflagellida - physiology</subject><subject>Ecology</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Evolutionary Biology</subject><subject>Growth rate</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Nitrates - metabolism</subject><subject>Nitrogen</subject><subject>Ocean warming</subject><subject>Oceans</subject><subject>Oceans and Seas</subject><subject>Photosynthesis</subject><subject>Short Communication</subject><subject>Symbiodinium</subject><subject>Symbiosis</subject><subject>Taxa</subject><subject>Temperature</subject><subject>Translocation</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1v1DAQhi0EoqVw5IosceGSxR-xnVyQUMVHpQoOwIWLNbEnW6-SeLGTVv33eHfLqlRInGx5Hj-e8UvIS85WnMnmbcgjblaCcbni4hE55UbxykjDHh_3WpyQZzlvGFNGa_OUnAhZMyM5PyU_v4Q5wYzUxXGLc5hDnGiYKJSDBAPNt2MXYg6ZXkMKmOlNmK_ojAUu15aEFMY4rem3PefDFJaRugE85ufkSQ9Dxhd36xn58fHD9_PP1eXXTxfn7y8rVzdmrjgXwFpQyte6Q9QNCufAGNM5rTjnWnsvG-haEL3vG9f2AoRpoQbmfc2UPCPvDt7t0o3oHU5losFuUxgh3doIwf5dmcKVXcdrK7Vm2ogieHMnSPHXgnm2Y8gOhwEmjEu2vFaNEtoo9X9UKtk2Woid9fUDdBOXNJWf2FNSlNbrQlUHyqWYc8L-2Ddndhew3QdsdwFbvrO-uj_skf6TaAFWByCX0rTGdO_Zfxp_A5lHs0o</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Baker, David M</creator><creator>Andras, Jason P</creator><creator>Jordán-Garza, Adán Guillermo</creator><creator>Fogel, Marilyn L</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20130601</creationdate><title>Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades</title><author>Baker, David M ; Andras, Jason P ; Jordán-Garza, Adán Guillermo ; Fogel, Marilyn L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-112a09a55d46bee68e2cca777bc6511166dd38ab9a2fdf8c9f2a279a4a0dd4053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/158/855</topic><topic>631/326/2565/547</topic><topic>Acropora tenuis</topic><topic>Animals</topic><topic>Anthozoa - classification</topic><topic>Anthozoa - growth & development</topic><topic>Anthozoa - physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Conspecifics</topic><topic>Coral bleaching</topic><topic>Coral Reefs</topic><topic>Dinoflagellida - genetics</topic><topic>Dinoflagellida - physiology</topic><topic>Ecology</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Evolutionary Biology</topic><topic>Growth rate</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Nitrates - metabolism</topic><topic>Nitrogen</topic><topic>Ocean warming</topic><topic>Oceans</topic><topic>Oceans and Seas</topic><topic>Photosynthesis</topic><topic>Short Communication</topic><topic>Symbiodinium</topic><topic>Symbiosis</topic><topic>Taxa</topic><topic>Temperature</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, David M</creatorcontrib><creatorcontrib>Andras, Jason P</creatorcontrib><creatorcontrib>Jordán-Garza, Adán Guillermo</creatorcontrib><creatorcontrib>Fogel, Marilyn L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, David M</au><au>Andras, Jason P</au><au>Jordán-Garza, Adán Guillermo</au><au>Fogel, Marilyn L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>7</volume><issue>6</issue><spage>1248</spage><epage>1251</epage><pages>1248-1251</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Many reef-building corals form symbioses with dinoflagellates from the diverse genus
Symbiodinium.
There is increasing evidence of functional significance to
Symbiodinium
diversity, which affects the coral holobiont’s response to changing environmental conditions. For example, corals hosting
Symbiodinium
from the clade D taxon exhibit greater resistance to heat-induced coral bleaching than conspecifics hosting the more common clade C. Yet, the relatively low prevalence of clade D suggests that this trait is not advantageous in non-stressful environments. Thus, clade D may only be able to out-compete other
Symbiodinium
types within the host habitat when conditions are chronically stressful. Previous studies have observed enhanced photosynthesis and fitness by clade C holobionts at non-stressful temperatures, relative to clade D. Yet, carbon-centered metrics cannot account for enhanced growth rates and patterns of symbiont succession to other genetic types when nitrogen often limits reef productivity. To investigate the metabolic costs of hosting thermally tolerant symbionts, we examined the assimilation and translocation of inorganic
15
N and
13
C in the coral
Acropora tenuis
experimentally infected with either clade C (sub-type C1) or D
Symbiodinium
at 28 and 30 °C. We show that at 28 °C, C1 holobionts acquired 22% more
15
N than clade D. However, at 30 °C, C1 symbionts acquired equivalent nitrogen and 16% less carbon than D. We hypothesize that C1 competitively excludes clade D
in hospite
via enhanced nitrogen acquisition and thus dominates coral populations despite warming oceans.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23407311</pmid><doi>10.1038/ismej.2013.12</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2013-06, Vol.7 (6), p.1248-1251 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3660672 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central |
subjects | 631/158/855 631/326/2565/547 Acropora tenuis Animals Anthozoa - classification Anthozoa - growth & development Anthozoa - physiology Biomedical and Life Sciences Carbon Carbon - metabolism Conspecifics Coral bleaching Coral Reefs Dinoflagellida - genetics Dinoflagellida - physiology Ecology Environmental changes Environmental conditions Evolutionary Biology Growth rate Life Sciences Microbial Ecology Microbial Genetics and Genomics Microbiology Nitrates - metabolism Nitrogen Ocean warming Oceans Oceans and Seas Photosynthesis Short Communication Symbiodinium Symbiosis Taxa Temperature Translocation |
title | Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrate%20competition%20in%20a%20coral%20symbiosis%20varies%20with%20temperature%20among%20Symbiodinium%20clades&rft.jtitle=The%20ISME%20Journal&rft.au=Baker,%20David%20M&rft.date=2013-06-01&rft.volume=7&rft.issue=6&rft.spage=1248&rft.epage=1251&rft.pages=1248-1251&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2013.12&rft_dat=%3Cproquest_pubme%3E1353986222%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1353320534&rft_id=info:pmid/23407311&rfr_iscdi=true |