Robust estimation of microbial diversity in theory and in practice
Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a samp...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2013-06, Vol.7 (6), p.1092-1101 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1101 |
---|---|
container_issue | 6 |
container_start_page | 1092 |
container_title | The ISME Journal |
container_volume | 7 |
creator | Haegeman, Bart Hamelin, Jérôme Moriarty, John Neal, Peter Dushoff, Jonathan Weitz, Joshua S |
description | Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao’s estimator of species richness to a set of
in silico
communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics (‘Hill diversities’), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao’s estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the
in silico
communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity. |
doi_str_mv | 10.1038/ismej.2013.10 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3660670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1367489177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-166c271a444c10842531c1b21ba30ab065d5a9d2eeb17a010a37a39c38e0f7fd3</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVJaZJtjr0WQy7NwdsZy5LsS2ET8lFYCJTmLGRZzmqxra1kL-y_r5xNljT0kIuk0TzzzjAvIV8Q5gi0-G5DZ9bzDJDG-AM5QcEwFVTA0eHNs2NyGsIagAnOxSdynNEcBEV6Qi5_uWoMQ2LCYDs1WNcnrkk6q72rrGqT2m6ND3bYJbZPhpVxfpeovp6ijVd6sNp8Jh8b1QZz9nzPyMPN9e-ru3R5f_vzarFMNSvEkCLnOhOo8jzXCEWeMYoaqwwrRUFVwFnNVFlnxlQoFCAoKhQtNS0MNKKp6Yz82OtuxqoztTb94FUrNz4O7nfSKSv_zfR2JR_dVlLOgQuIAhd7gdWbsrvFUk5_AAUrWS62GNlvz828-zPG7cjOBm3aVvXGjUEi5SIvShTiHSijZcGQFxE9f4Ou3ej7uLUnimbA4jkj6Z6KJoTgTXMYFkFOpssn0-Vk-hTPyNfXiznQLy5HYL4HQkz1j8a_avtfxb-Py7aJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1353320553</pqid></control><display><type>article</type><title>Robust estimation of microbial diversity in theory and in practice</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Haegeman, Bart ; Hamelin, Jérôme ; Moriarty, John ; Neal, Peter ; Dushoff, Jonathan ; Weitz, Joshua S</creator><creatorcontrib>Haegeman, Bart ; Hamelin, Jérôme ; Moriarty, John ; Neal, Peter ; Dushoff, Jonathan ; Weitz, Joshua S</creatorcontrib><description>Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao’s estimator of species richness to a set of
in silico
communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics (‘Hill diversities’), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao’s estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the
in silico
communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2013.10</identifier><identifier>PMID: 23407313</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/670 ; 631/158/855 ; 631/326/2565/2142 ; Archaea - classification ; Bacteria - classification ; Biodiversity ; Biomedical and Life Sciences ; Computer Science ; Computer Simulation ; Ecology ; Evolutionary Biology ; Life Sciences ; Metagenomics ; Microbial activity ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Original ; original-article ; Other ; Rare species ; Regression Analysis ; Seawater - microbiology ; Soil Microbiology ; Species diversity ; Species richness</subject><ispartof>The ISME Journal, 2013-06, Vol.7 (6), p.1092-1101</ispartof><rights>International Society for Microbial Ecology 2013</rights><rights>Copyright Nature Publishing Group Jun 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2013 International Society for Microbial Ecology 2013 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-166c271a444c10842531c1b21ba30ab065d5a9d2eeb17a010a37a39c38e0f7fd3</citedby><cites>FETCH-LOGICAL-c587t-166c271a444c10842531c1b21ba30ab065d5a9d2eeb17a010a37a39c38e0f7fd3</cites><orcidid>0000-0003-2325-4727 ; 0000-0003-3601-6349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660670/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660670/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23407313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-00859547$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Haegeman, Bart</creatorcontrib><creatorcontrib>Hamelin, Jérôme</creatorcontrib><creatorcontrib>Moriarty, John</creatorcontrib><creatorcontrib>Neal, Peter</creatorcontrib><creatorcontrib>Dushoff, Jonathan</creatorcontrib><creatorcontrib>Weitz, Joshua S</creatorcontrib><title>Robust estimation of microbial diversity in theory and in practice</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao’s estimator of species richness to a set of
in silico
communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics (‘Hill diversities’), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao’s estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the
in silico
communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.</description><subject>631/158/670</subject><subject>631/158/855</subject><subject>631/326/2565/2142</subject><subject>Archaea - classification</subject><subject>Bacteria - classification</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Life Sciences</subject><subject>Metagenomics</subject><subject>Microbial activity</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Original</subject><subject>original-article</subject><subject>Other</subject><subject>Rare species</subject><subject>Regression Analysis</subject><subject>Seawater - microbiology</subject><subject>Soil Microbiology</subject><subject>Species diversity</subject><subject>Species richness</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkU1r3DAQhkVJaZJtjr0WQy7NwdsZy5LsS2ET8lFYCJTmLGRZzmqxra1kL-y_r5xNljT0kIuk0TzzzjAvIV8Q5gi0-G5DZ9bzDJDG-AM5QcEwFVTA0eHNs2NyGsIagAnOxSdynNEcBEV6Qi5_uWoMQ2LCYDs1WNcnrkk6q72rrGqT2m6ND3bYJbZPhpVxfpeovp6ijVd6sNp8Jh8b1QZz9nzPyMPN9e-ru3R5f_vzarFMNSvEkCLnOhOo8jzXCEWeMYoaqwwrRUFVwFnNVFlnxlQoFCAoKhQtNS0MNKKp6Yz82OtuxqoztTb94FUrNz4O7nfSKSv_zfR2JR_dVlLOgQuIAhd7gdWbsrvFUk5_AAUrWS62GNlvz828-zPG7cjOBm3aVvXGjUEi5SIvShTiHSijZcGQFxE9f4Ou3ej7uLUnimbA4jkj6Z6KJoTgTXMYFkFOpssn0-Vk-hTPyNfXiznQLy5HYL4HQkz1j8a_avtfxb-Py7aJ</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Haegeman, Bart</creator><creator>Hamelin, Jérôme</creator><creator>Moriarty, John</creator><creator>Neal, Peter</creator><creator>Dushoff, Jonathan</creator><creator>Weitz, Joshua S</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2325-4727</orcidid><orcidid>https://orcid.org/0000-0003-3601-6349</orcidid></search><sort><creationdate>20130601</creationdate><title>Robust estimation of microbial diversity in theory and in practice</title><author>Haegeman, Bart ; Hamelin, Jérôme ; Moriarty, John ; Neal, Peter ; Dushoff, Jonathan ; Weitz, Joshua S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-166c271a444c10842531c1b21ba30ab065d5a9d2eeb17a010a37a39c38e0f7fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/158/670</topic><topic>631/158/855</topic><topic>631/326/2565/2142</topic><topic>Archaea - classification</topic><topic>Bacteria - classification</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Life Sciences</topic><topic>Metagenomics</topic><topic>Microbial activity</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Original</topic><topic>original-article</topic><topic>Other</topic><topic>Rare species</topic><topic>Regression Analysis</topic><topic>Seawater - microbiology</topic><topic>Soil Microbiology</topic><topic>Species diversity</topic><topic>Species richness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haegeman, Bart</creatorcontrib><creatorcontrib>Hamelin, Jérôme</creatorcontrib><creatorcontrib>Moriarty, John</creatorcontrib><creatorcontrib>Neal, Peter</creatorcontrib><creatorcontrib>Dushoff, Jonathan</creatorcontrib><creatorcontrib>Weitz, Joshua S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haegeman, Bart</au><au>Hamelin, Jérôme</au><au>Moriarty, John</au><au>Neal, Peter</au><au>Dushoff, Jonathan</au><au>Weitz, Joshua S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust estimation of microbial diversity in theory and in practice</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>7</volume><issue>6</issue><spage>1092</spage><epage>1101</epage><pages>1092-1101</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao’s estimator of species richness to a set of
in silico
communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics (‘Hill diversities’), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao’s estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the
in silico
communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23407313</pmid><doi>10.1038/ismej.2013.10</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2325-4727</orcidid><orcidid>https://orcid.org/0000-0003-3601-6349</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2013-06, Vol.7 (6), p.1092-1101 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3660670 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | 631/158/670 631/158/855 631/326/2565/2142 Archaea - classification Bacteria - classification Biodiversity Biomedical and Life Sciences Computer Science Computer Simulation Ecology Evolutionary Biology Life Sciences Metagenomics Microbial activity Microbial Ecology Microbial Genetics and Genomics Microbiology Original original-article Other Rare species Regression Analysis Seawater - microbiology Soil Microbiology Species diversity Species richness |
title | Robust estimation of microbial diversity in theory and in practice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A19%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20estimation%20of%20microbial%20diversity%20in%20theory%20and%20in%20practice&rft.jtitle=The%20ISME%20Journal&rft.au=Haegeman,%20Bart&rft.date=2013-06-01&rft.volume=7&rft.issue=6&rft.spage=1092&rft.epage=1101&rft.pages=1092-1101&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2013.10&rft_dat=%3Cproquest_pubme%3E1367489177%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1353320553&rft_id=info:pmid/23407313&rfr_iscdi=true |