Robust estimation of microbial diversity in theory and in practice

Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a samp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2013-06, Vol.7 (6), p.1092-1101
Hauptverfasser: Haegeman, Bart, Hamelin, Jérôme, Moriarty, John, Neal, Peter, Dushoff, Jonathan, Weitz, Joshua S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1101
container_issue 6
container_start_page 1092
container_title The ISME Journal
container_volume 7
creator Haegeman, Bart
Hamelin, Jérôme
Moriarty, John
Neal, Peter
Dushoff, Jonathan
Weitz, Joshua S
description Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao’s estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics (‘Hill diversities’), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao’s estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.
doi_str_mv 10.1038/ismej.2013.10
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3660670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1367489177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-166c271a444c10842531c1b21ba30ab065d5a9d2eeb17a010a37a39c38e0f7fd3</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVJaZJtjr0WQy7NwdsZy5LsS2ET8lFYCJTmLGRZzmqxra1kL-y_r5xNljT0kIuk0TzzzjAvIV8Q5gi0-G5DZ9bzDJDG-AM5QcEwFVTA0eHNs2NyGsIagAnOxSdynNEcBEV6Qi5_uWoMQ2LCYDs1WNcnrkk6q72rrGqT2m6ND3bYJbZPhpVxfpeovp6ijVd6sNp8Jh8b1QZz9nzPyMPN9e-ru3R5f_vzarFMNSvEkCLnOhOo8jzXCEWeMYoaqwwrRUFVwFnNVFlnxlQoFCAoKhQtNS0MNKKp6Yz82OtuxqoztTb94FUrNz4O7nfSKSv_zfR2JR_dVlLOgQuIAhd7gdWbsrvFUk5_AAUrWS62GNlvz828-zPG7cjOBm3aVvXGjUEi5SIvShTiHSijZcGQFxE9f4Ou3ej7uLUnimbA4jkj6Z6KJoTgTXMYFkFOpssn0-Vk-hTPyNfXiznQLy5HYL4HQkz1j8a_avtfxb-Py7aJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1353320553</pqid></control><display><type>article</type><title>Robust estimation of microbial diversity in theory and in practice</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Haegeman, Bart ; Hamelin, Jérôme ; Moriarty, John ; Neal, Peter ; Dushoff, Jonathan ; Weitz, Joshua S</creator><creatorcontrib>Haegeman, Bart ; Hamelin, Jérôme ; Moriarty, John ; Neal, Peter ; Dushoff, Jonathan ; Weitz, Joshua S</creatorcontrib><description>Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao’s estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics (‘Hill diversities’), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao’s estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2013.10</identifier><identifier>PMID: 23407313</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/670 ; 631/158/855 ; 631/326/2565/2142 ; Archaea - classification ; Bacteria - classification ; Biodiversity ; Biomedical and Life Sciences ; Computer Science ; Computer Simulation ; Ecology ; Evolutionary Biology ; Life Sciences ; Metagenomics ; Microbial activity ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Original ; original-article ; Other ; Rare species ; Regression Analysis ; Seawater - microbiology ; Soil Microbiology ; Species diversity ; Species richness</subject><ispartof>The ISME Journal, 2013-06, Vol.7 (6), p.1092-1101</ispartof><rights>International Society for Microbial Ecology 2013</rights><rights>Copyright Nature Publishing Group Jun 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2013 International Society for Microbial Ecology 2013 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-166c271a444c10842531c1b21ba30ab065d5a9d2eeb17a010a37a39c38e0f7fd3</citedby><cites>FETCH-LOGICAL-c587t-166c271a444c10842531c1b21ba30ab065d5a9d2eeb17a010a37a39c38e0f7fd3</cites><orcidid>0000-0003-2325-4727 ; 0000-0003-3601-6349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660670/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660670/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23407313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-00859547$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Haegeman, Bart</creatorcontrib><creatorcontrib>Hamelin, Jérôme</creatorcontrib><creatorcontrib>Moriarty, John</creatorcontrib><creatorcontrib>Neal, Peter</creatorcontrib><creatorcontrib>Dushoff, Jonathan</creatorcontrib><creatorcontrib>Weitz, Joshua S</creatorcontrib><title>Robust estimation of microbial diversity in theory and in practice</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao’s estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics (‘Hill diversities’), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao’s estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.</description><subject>631/158/670</subject><subject>631/158/855</subject><subject>631/326/2565/2142</subject><subject>Archaea - classification</subject><subject>Bacteria - classification</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Life Sciences</subject><subject>Metagenomics</subject><subject>Microbial activity</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Original</subject><subject>original-article</subject><subject>Other</subject><subject>Rare species</subject><subject>Regression Analysis</subject><subject>Seawater - microbiology</subject><subject>Soil Microbiology</subject><subject>Species diversity</subject><subject>Species richness</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkU1r3DAQhkVJaZJtjr0WQy7NwdsZy5LsS2ET8lFYCJTmLGRZzmqxra1kL-y_r5xNljT0kIuk0TzzzjAvIV8Q5gi0-G5DZ9bzDJDG-AM5QcEwFVTA0eHNs2NyGsIagAnOxSdynNEcBEV6Qi5_uWoMQ2LCYDs1WNcnrkk6q72rrGqT2m6ND3bYJbZPhpVxfpeovp6ijVd6sNp8Jh8b1QZz9nzPyMPN9e-ru3R5f_vzarFMNSvEkCLnOhOo8jzXCEWeMYoaqwwrRUFVwFnNVFlnxlQoFCAoKhQtNS0MNKKp6Yz82OtuxqoztTb94FUrNz4O7nfSKSv_zfR2JR_dVlLOgQuIAhd7gdWbsrvFUk5_AAUrWS62GNlvz828-zPG7cjOBm3aVvXGjUEi5SIvShTiHSijZcGQFxE9f4Ou3ej7uLUnimbA4jkj6Z6KJoTgTXMYFkFOpssn0-Vk-hTPyNfXiznQLy5HYL4HQkz1j8a_avtfxb-Py7aJ</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Haegeman, Bart</creator><creator>Hamelin, Jérôme</creator><creator>Moriarty, John</creator><creator>Neal, Peter</creator><creator>Dushoff, Jonathan</creator><creator>Weitz, Joshua S</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2325-4727</orcidid><orcidid>https://orcid.org/0000-0003-3601-6349</orcidid></search><sort><creationdate>20130601</creationdate><title>Robust estimation of microbial diversity in theory and in practice</title><author>Haegeman, Bart ; Hamelin, Jérôme ; Moriarty, John ; Neal, Peter ; Dushoff, Jonathan ; Weitz, Joshua S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-166c271a444c10842531c1b21ba30ab065d5a9d2eeb17a010a37a39c38e0f7fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/158/670</topic><topic>631/158/855</topic><topic>631/326/2565/2142</topic><topic>Archaea - classification</topic><topic>Bacteria - classification</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Life Sciences</topic><topic>Metagenomics</topic><topic>Microbial activity</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Original</topic><topic>original-article</topic><topic>Other</topic><topic>Rare species</topic><topic>Regression Analysis</topic><topic>Seawater - microbiology</topic><topic>Soil Microbiology</topic><topic>Species diversity</topic><topic>Species richness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haegeman, Bart</creatorcontrib><creatorcontrib>Hamelin, Jérôme</creatorcontrib><creatorcontrib>Moriarty, John</creatorcontrib><creatorcontrib>Neal, Peter</creatorcontrib><creatorcontrib>Dushoff, Jonathan</creatorcontrib><creatorcontrib>Weitz, Joshua S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haegeman, Bart</au><au>Hamelin, Jérôme</au><au>Moriarty, John</au><au>Neal, Peter</au><au>Dushoff, Jonathan</au><au>Weitz, Joshua S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust estimation of microbial diversity in theory and in practice</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>7</volume><issue>6</issue><spage>1092</spage><epage>1101</epage><pages>1092-1101</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao’s estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics (‘Hill diversities’), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao’s estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23407313</pmid><doi>10.1038/ismej.2013.10</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2325-4727</orcidid><orcidid>https://orcid.org/0000-0003-3601-6349</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2013-06, Vol.7 (6), p.1092-1101
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3660670
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 631/158/670
631/158/855
631/326/2565/2142
Archaea - classification
Bacteria - classification
Biodiversity
Biomedical and Life Sciences
Computer Science
Computer Simulation
Ecology
Evolutionary Biology
Life Sciences
Metagenomics
Microbial activity
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Original
original-article
Other
Rare species
Regression Analysis
Seawater - microbiology
Soil Microbiology
Species diversity
Species richness
title Robust estimation of microbial diversity in theory and in practice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A19%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20estimation%20of%20microbial%20diversity%20in%20theory%20and%20in%20practice&rft.jtitle=The%20ISME%20Journal&rft.au=Haegeman,%20Bart&rft.date=2013-06-01&rft.volume=7&rft.issue=6&rft.spage=1092&rft.epage=1101&rft.pages=1092-1101&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2013.10&rft_dat=%3Cproquest_pubme%3E1367489177%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1353320553&rft_id=info:pmid/23407313&rfr_iscdi=true