Escalation of polymerization in a thermal gradient

For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-05, Vol.110 (20), p.8030-8035
Hauptverfasser: Mast, Christof B., Schink, Severin, Gerland, Ulrich, Braun, Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8035
container_issue 20
container_start_page 8030
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Mast, Christof B.
Schink, Severin
Gerland, Ulrich
Braun, Dieter
description For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10 ⁶⁰⁰ compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers.
doi_str_mv 10.1073/pnas.1303222110
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3657786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42656631</jstor_id><sourcerecordid>42656631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-9fbe20bf6ddfa40e7be6448dee516e5fc097c73a00b23ed24f0e2aaf237ae0f53</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EotvCmRMQqRcuacfj2E4ulVBVPqRKPZSerUlib71K4sXOIpVfj5ddti0nS55nHs_4ZewdhzMOWpyvJ0pnXIBARM7hBVtwaHipqgZesgUA6rKusDpixymtAKCRNbxmRyiUAKxhwfAqdTTQ7MNUBFesw_Aw2uh_7278VFAx39s40lAsI_XeTvMb9srRkOzb_XnC7r5c_bj8Vl7ffP1--fm67KTUc9m41iK0TvW9owqsbq2qqrq3VnJlpeug0Z0WBNCisD1WDiwSORSaLDgpTtjFzrvetKPtu_x0pMGsox8pPphA3jyvTP7eLMMvI5TUulZZ8GkviOHnxqbZjD51dhhosmGTDBcS8yc0vMno6X_oKmzilNf7S2nNQehMne-oLoaUonWHYTiYbR5mm4d5zCN3fHi6w4H_F0AGPu6BbedBl30IJte3xPsdsUpziAekQiWVEvzR4CgYWkafzN0tAlcAXOhGo_gDSZmj5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1352771037</pqid></control><display><type>article</type><title>Escalation of polymerization in a thermal gradient</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mast, Christof B. ; Schink, Severin ; Gerland, Ulrich ; Braun, Dieter</creator><creatorcontrib>Mast, Christof B. ; Schink, Severin ; Gerland, Ulrich ; Braun, Dieter</creatorcontrib><description>For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of &gt;10 ⁶⁰⁰ compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1303222110</identifier><identifier>PMID: 23630280</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biopolymers ; Biopolymers - chemistry ; Calibration ; Catalysis ; Convection ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; Fluorescence Resonance Energy Transfer ; Geology - methods ; Kinetics ; Models, Statistical ; Molecules ; Monomers ; Nucleotides ; Nucleotides - chemistry ; Physical Sciences ; Polymerization ; Polymers ; Ribonucleic acid ; RNA ; RNA - chemistry ; RNA, Catalytic - chemistry ; Rocks ; Soret coefficient ; Temperature ; Temperature gradients ; Water - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-05, Vol.110 (20), p.8030-8035</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 14, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-9fbe20bf6ddfa40e7be6448dee516e5fc097c73a00b23ed24f0e2aaf237ae0f53</citedby><cites>FETCH-LOGICAL-c557t-9fbe20bf6ddfa40e7be6448dee516e5fc097c73a00b23ed24f0e2aaf237ae0f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/20.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42656631$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42656631$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23630280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mast, Christof B.</creatorcontrib><creatorcontrib>Schink, Severin</creatorcontrib><creatorcontrib>Gerland, Ulrich</creatorcontrib><creatorcontrib>Braun, Dieter</creatorcontrib><title>Escalation of polymerization in a thermal gradient</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of &gt;10 ⁶⁰⁰ compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers.</description><subject>Biological Sciences</subject><subject>Biopolymers</subject><subject>Biopolymers - chemistry</subject><subject>Calibration</subject><subject>Catalysis</subject><subject>Convection</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Geology - methods</subject><subject>Kinetics</subject><subject>Models, Statistical</subject><subject>Molecules</subject><subject>Monomers</subject><subject>Nucleotides</subject><subject>Nucleotides - chemistry</subject><subject>Physical Sciences</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA, Catalytic - chemistry</subject><subject>Rocks</subject><subject>Soret coefficient</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Water - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0EotvCmRMQqRcuacfj2E4ulVBVPqRKPZSerUlib71K4sXOIpVfj5ddti0nS55nHs_4ZewdhzMOWpyvJ0pnXIBARM7hBVtwaHipqgZesgUA6rKusDpixymtAKCRNbxmRyiUAKxhwfAqdTTQ7MNUBFesw_Aw2uh_7278VFAx39s40lAsI_XeTvMb9srRkOzb_XnC7r5c_bj8Vl7ffP1--fm67KTUc9m41iK0TvW9owqsbq2qqrq3VnJlpeug0Z0WBNCisD1WDiwSORSaLDgpTtjFzrvetKPtu_x0pMGsox8pPphA3jyvTP7eLMMvI5TUulZZ8GkviOHnxqbZjD51dhhosmGTDBcS8yc0vMno6X_oKmzilNf7S2nNQehMne-oLoaUonWHYTiYbR5mm4d5zCN3fHi6w4H_F0AGPu6BbedBl30IJte3xPsdsUpziAekQiWVEvzR4CgYWkafzN0tAlcAXOhGo_gDSZmj5A</recordid><startdate>20130514</startdate><enddate>20130514</enddate><creator>Mast, Christof B.</creator><creator>Schink, Severin</creator><creator>Gerland, Ulrich</creator><creator>Braun, Dieter</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130514</creationdate><title>Escalation of polymerization in a thermal gradient</title><author>Mast, Christof B. ; Schink, Severin ; Gerland, Ulrich ; Braun, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-9fbe20bf6ddfa40e7be6448dee516e5fc097c73a00b23ed24f0e2aaf237ae0f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological Sciences</topic><topic>Biopolymers</topic><topic>Biopolymers - chemistry</topic><topic>Calibration</topic><topic>Catalysis</topic><topic>Convection</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Geology - methods</topic><topic>Kinetics</topic><topic>Models, Statistical</topic><topic>Molecules</topic><topic>Monomers</topic><topic>Nucleotides</topic><topic>Nucleotides - chemistry</topic><topic>Physical Sciences</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA, Catalytic - chemistry</topic><topic>Rocks</topic><topic>Soret coefficient</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mast, Christof B.</creatorcontrib><creatorcontrib>Schink, Severin</creatorcontrib><creatorcontrib>Gerland, Ulrich</creatorcontrib><creatorcontrib>Braun, Dieter</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mast, Christof B.</au><au>Schink, Severin</au><au>Gerland, Ulrich</au><au>Braun, Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Escalation of polymerization in a thermal gradient</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-05-14</date><risdate>2013</risdate><volume>110</volume><issue>20</issue><spage>8030</spage><epage>8035</epage><pages>8030-8035</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of &gt;10 ⁶⁰⁰ compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23630280</pmid><doi>10.1073/pnas.1303222110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-05, Vol.110 (20), p.8030-8035
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3657786
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Biopolymers
Biopolymers - chemistry
Calibration
Catalysis
Convection
Deoxyribonucleic acid
DNA
DNA - chemistry
Fluorescence Resonance Energy Transfer
Geology - methods
Kinetics
Models, Statistical
Molecules
Monomers
Nucleotides
Nucleotides - chemistry
Physical Sciences
Polymerization
Polymers
Ribonucleic acid
RNA
RNA - chemistry
RNA, Catalytic - chemistry
Rocks
Soret coefficient
Temperature
Temperature gradients
Water - chemistry
title Escalation of polymerization in a thermal gradient
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Escalation%20of%20polymerization%20in%20a%20thermal%20gradient&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mast,%20Christof%20B.&rft.date=2013-05-14&rft.volume=110&rft.issue=20&rft.spage=8030&rft.epage=8035&rft.pages=8030-8035&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1303222110&rft_dat=%3Cjstor_pubme%3E42656631%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1352771037&rft_id=info:pmid/23630280&rft_jstor_id=42656631&rfr_iscdi=true