Displacing, squeezing, and time evolution of quantum states for nanoelectronic circuits

The time behavior of DSN (displaced squeezed number state) for a two-dimensional electronic circuit composed of nanoscale elements is investigated using unitary transformation approach. The original Hamiltonian of the system is somewhat complicated. However, through unitary transformation, the Hamil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale research letters 2013-01, Vol.8 (1), p.30-30, Article 30
Hauptverfasser: Choi, Jeong Ryeol, Choi, Byeong Jae, Kim, Hyun Deok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1
container_start_page 30
container_title Nanoscale research letters
container_volume 8
creator Choi, Jeong Ryeol
Choi, Byeong Jae
Kim, Hyun Deok
description The time behavior of DSN (displaced squeezed number state) for a two-dimensional electronic circuit composed of nanoscale elements is investigated using unitary transformation approach. The original Hamiltonian of the system is somewhat complicated. However, through unitary transformation, the Hamiltonian became very simple enough that we can easily treat it. By executing inverse transformation for the wave function obtained in the transformed system, we derived the exact wave function associated to the DSN in the original system. The time evolution of the DSN is described in detail, and its corresponding probability density is illustrated. We confirmed that the probability density oscillates with time like that of a classical state. There are two factors that drive the probability density to oscillate: One is the initial amplitude of complementary functions, and the other is the external power source. The oscillation associated with the initial amplitude gradually disappears with time due to the dissipation raised by resistances of the system. These analyses exactly coincide with those obtained from classical state. The characteristics of quantum fluctuations and uncertainty relations for charges and currents are also addressed.
doi_str_mv 10.1186/1556-276X-8-30
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3654897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3586020961</sourcerecordid><originalsourceid>FETCH-LOGICAL-b446t-42fdbff4c9e846ed73796768ffc02cdf0ee9fa6b105901ff1ce00bef99f678263</originalsourceid><addsrcrecordid>eNp1kc1rFTEUxQex2FrdupSAGxdOm4-ZfGyEUlsVCm4U3YVM5uaZMpO8JpmC_vXN66uP1uoql5wf5x7ObZpXBB8RIvkx6XveUsF_tLJl-ElzsPt4WmfFSCt6wfab5zlfYtwJLPizZp8yRjFn5KD5_sHn9WSsD6t3KF8tAL9vRxNGVPwMCK7jtBQfA4oOXS0mlGVGuZgCGbmYUDAhwgS2pBi8RdYnu_iSXzR7zkwZXt69h82387Ovp5_aiy8fP5-eXLRD1_HSdtSNg3OdVSA7DqNgQnHBpXMWUzs6DKCc4QPBvcLEOWIB4wGcUo4LSTk7bN5vfdfLMMNoIZRkJr1Ofjbpl47G64dK8D_1Kl5rxvtOKlENTrYGg4__MXio2DjrTcl6U7KWmuHq8fYuRIq1wlz07LOFaTIB4pI1YT2lEsueVvTNX-hlXFKoFWnCe6p6QUlXqaMtZVPMOYHb5SFYb-7-OMHr-zXs8D-HrsDxFshVCitI9_b-2_IGGBq6yA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652957214</pqid></control><display><type>article</type><title>Displacing, squeezing, and time evolution of quantum states for nanoelectronic circuits</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Choi, Jeong Ryeol ; Choi, Byeong Jae ; Kim, Hyun Deok</creator><creatorcontrib>Choi, Jeong Ryeol ; Choi, Byeong Jae ; Kim, Hyun Deok</creatorcontrib><description>The time behavior of DSN (displaced squeezed number state) for a two-dimensional electronic circuit composed of nanoscale elements is investigated using unitary transformation approach. The original Hamiltonian of the system is somewhat complicated. However, through unitary transformation, the Hamiltonian became very simple enough that we can easily treat it. By executing inverse transformation for the wave function obtained in the transformed system, we derived the exact wave function associated to the DSN in the original system. The time evolution of the DSN is described in detail, and its corresponding probability density is illustrated. We confirmed that the probability density oscillates with time like that of a classical state. There are two factors that drive the probability density to oscillate: One is the initial amplitude of complementary functions, and the other is the external power source. The oscillation associated with the initial amplitude gradually disappears with time due to the dissipation raised by resistances of the system. These analyses exactly coincide with those obtained from classical state. The characteristics of quantum fluctuations and uncertainty relations for charges and currents are also addressed.</description><identifier>ISSN: 1931-7573</identifier><identifier>ISSN: 1556-276X</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/1556-276X-8-30</identifier><identifier>PMID: 23320631</identifier><language>eng</language><publisher>New York: Springer New York</publisher><subject>Chemistry and Materials Science ; International Conference on Superlattices ; Materials Science ; Molecular Medicine ; Nano Express ; Nanochemistry ; Nanodevices (ICSNN 2012) ; Nanoscale Science and Technology ; Nanostructures ; Nanotechnology ; Nanotechnology and Microengineering</subject><ispartof>Nanoscale research letters, 2013-01, Vol.8 (1), p.30-30, Article 30</ispartof><rights>Choi et al.; licensee Springer. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>The Author(s) 2013</rights><rights>Copyright ©2013 Choi et al.; licensee Springer. 2013 Choi et al.; licensee Springer.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b446t-42fdbff4c9e846ed73796768ffc02cdf0ee9fa6b105901ff1ce00bef99f678263</citedby><cites>FETCH-LOGICAL-b446t-42fdbff4c9e846ed73796768ffc02cdf0ee9fa6b105901ff1ce00bef99f678263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654897/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654897/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23320631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Jeong Ryeol</creatorcontrib><creatorcontrib>Choi, Byeong Jae</creatorcontrib><creatorcontrib>Kim, Hyun Deok</creatorcontrib><title>Displacing, squeezing, and time evolution of quantum states for nanoelectronic circuits</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>The time behavior of DSN (displaced squeezed number state) for a two-dimensional electronic circuit composed of nanoscale elements is investigated using unitary transformation approach. The original Hamiltonian of the system is somewhat complicated. However, through unitary transformation, the Hamiltonian became very simple enough that we can easily treat it. By executing inverse transformation for the wave function obtained in the transformed system, we derived the exact wave function associated to the DSN in the original system. The time evolution of the DSN is described in detail, and its corresponding probability density is illustrated. We confirmed that the probability density oscillates with time like that of a classical state. There are two factors that drive the probability density to oscillate: One is the initial amplitude of complementary functions, and the other is the external power source. The oscillation associated with the initial amplitude gradually disappears with time due to the dissipation raised by resistances of the system. These analyses exactly coincide with those obtained from classical state. The characteristics of quantum fluctuations and uncertainty relations for charges and currents are also addressed.</description><subject>Chemistry and Materials Science</subject><subject>International Conference on Superlattices</subject><subject>Materials Science</subject><subject>Molecular Medicine</subject><subject>Nano Express</subject><subject>Nanochemistry</subject><subject>Nanodevices (ICSNN 2012)</subject><subject>Nanoscale Science and Technology</subject><subject>Nanostructures</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><issn>1931-7573</issn><issn>1556-276X</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1rFTEUxQex2FrdupSAGxdOm4-ZfGyEUlsVCm4U3YVM5uaZMpO8JpmC_vXN66uP1uoql5wf5x7ObZpXBB8RIvkx6XveUsF_tLJl-ElzsPt4WmfFSCt6wfab5zlfYtwJLPizZp8yRjFn5KD5_sHn9WSsD6t3KF8tAL9vRxNGVPwMCK7jtBQfA4oOXS0mlGVGuZgCGbmYUDAhwgS2pBi8RdYnu_iSXzR7zkwZXt69h82387Ovp5_aiy8fP5-eXLRD1_HSdtSNg3OdVSA7DqNgQnHBpXMWUzs6DKCc4QPBvcLEOWIB4wGcUo4LSTk7bN5vfdfLMMNoIZRkJr1Ofjbpl47G64dK8D_1Kl5rxvtOKlENTrYGg4__MXio2DjrTcl6U7KWmuHq8fYuRIq1wlz07LOFaTIB4pI1YT2lEsueVvTNX-hlXFKoFWnCe6p6QUlXqaMtZVPMOYHb5SFYb-7-OMHr-zXs8D-HrsDxFshVCitI9_b-2_IGGBq6yA</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Choi, Jeong Ryeol</creator><creator>Choi, Byeong Jae</creator><creator>Kim, Hyun Deok</creator><general>Springer New York</general><general>Springer Nature B.V</general><general>BioMed Central Ltd</general><general>Springer</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130115</creationdate><title>Displacing, squeezing, and time evolution of quantum states for nanoelectronic circuits</title><author>Choi, Jeong Ryeol ; Choi, Byeong Jae ; Kim, Hyun Deok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b446t-42fdbff4c9e846ed73796768ffc02cdf0ee9fa6b105901ff1ce00bef99f678263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemistry and Materials Science</topic><topic>International Conference on Superlattices</topic><topic>Materials Science</topic><topic>Molecular Medicine</topic><topic>Nano Express</topic><topic>Nanochemistry</topic><topic>Nanodevices (ICSNN 2012)</topic><topic>Nanoscale Science and Technology</topic><topic>Nanostructures</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jeong Ryeol</creatorcontrib><creatorcontrib>Choi, Byeong Jae</creatorcontrib><creatorcontrib>Kim, Hyun Deok</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jeong Ryeol</au><au>Choi, Byeong Jae</au><au>Kim, Hyun Deok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Displacing, squeezing, and time evolution of quantum states for nanoelectronic circuits</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2013-01-15</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>30</spage><epage>30</epage><pages>30-30</pages><artnum>30</artnum><issn>1931-7573</issn><issn>1556-276X</issn><eissn>1556-276X</eissn><abstract>The time behavior of DSN (displaced squeezed number state) for a two-dimensional electronic circuit composed of nanoscale elements is investigated using unitary transformation approach. The original Hamiltonian of the system is somewhat complicated. However, through unitary transformation, the Hamiltonian became very simple enough that we can easily treat it. By executing inverse transformation for the wave function obtained in the transformed system, we derived the exact wave function associated to the DSN in the original system. The time evolution of the DSN is described in detail, and its corresponding probability density is illustrated. We confirmed that the probability density oscillates with time like that of a classical state. There are two factors that drive the probability density to oscillate: One is the initial amplitude of complementary functions, and the other is the external power source. The oscillation associated with the initial amplitude gradually disappears with time due to the dissipation raised by resistances of the system. These analyses exactly coincide with those obtained from classical state. The characteristics of quantum fluctuations and uncertainty relations for charges and currents are also addressed.</abstract><cop>New York</cop><pub>Springer New York</pub><pmid>23320631</pmid><doi>10.1186/1556-276X-8-30</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-7573
ispartof Nanoscale research letters, 2013-01, Vol.8 (1), p.30-30, Article 30
issn 1931-7573
1556-276X
1556-276X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3654897
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Chemistry and Materials Science
International Conference on Superlattices
Materials Science
Molecular Medicine
Nano Express
Nanochemistry
Nanodevices (ICSNN 2012)
Nanoscale Science and Technology
Nanostructures
Nanotechnology
Nanotechnology and Microengineering
title Displacing, squeezing, and time evolution of quantum states for nanoelectronic circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Displacing,%20squeezing,%20and%20time%20evolution%20of%20quantum%20states%20for%20nanoelectronic%20circuits&rft.jtitle=Nanoscale%20research%20letters&rft.au=Choi,%20Jeong%20Ryeol&rft.date=2013-01-15&rft.volume=8&rft.issue=1&rft.spage=30&rft.epage=30&rft.pages=30-30&rft.artnum=30&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/1556-276X-8-30&rft_dat=%3Cproquest_pubme%3E3586020961%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652957214&rft_id=info:pmid/23320631&rfr_iscdi=true