Inhibition of hepatitis C viral RNA-dependent RNA polymerase by α-P-boranophosphate nucleotides: Exploring a potential strategy for mechanism-based HCV drug design
► α-P-BH3 modification increased incorporation of ribose modified ATP by HCV NS5BΔ55. ► Rp-ATPαB is a better substrate of HCV NS5BΔ55 RdRP than ATP. ► The NS5BΔ55 polymerase prefers the Rp stereoisomer of boranophosphate analogs. ► Rp-α-P-BH3 modification shifted the potency of 2′-OMe ATP and 3′-dAT...
Gespeichert in:
Veröffentlicht in: | Antiviral research 2013-05, Vol.98 (2), p.144-152 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 152 |
---|---|
container_issue | 2 |
container_start_page | 144 |
container_title | Antiviral research |
container_volume | 98 |
creator | Cheek, Marcus Adrian Sharaf, Mariam L. Dobrikov, Mikhail I. Shaw, Barbara Ramsay |
description | ► α-P-BH3 modification increased incorporation of ribose modified ATP by HCV NS5BΔ55. ► Rp-ATPαB is a better substrate of HCV NS5BΔ55 RdRP than ATP. ► The NS5BΔ55 polymerase prefers the Rp stereoisomer of boranophosphate analogs. ► Rp-α-P-BH3 modification shifted the potency of 2′-OMe ATP and 3′-dATP 5- and 21-fold. ► Both ribose-modified ATPαB analogs exhibited a competitive mode of inhibition.
Improved treatments for chronic HCV infections remain a challenge, and new chemical strategies are needed to expand the current paradigm. The HCV RNA polymerase (RdRP) has been a target for antiviral development. For the first time we show that the boranophosphate (BP) modification increases the substrate efficiency of ATP analogs into HCV NS5BΔ55 RdRP-catalyzed RNA. Boranophosphate nucleotides contain a borane (BH3) group substituted for a non-bridging phosphoryl oxygen of a normal phosphate group, resulting in a class of modified isoelectronic DNA and RNA mimics capable of modulating the reading and writing of genetic information. We determine that HCV NS5BΔ55, being a stereospecific enzyme, incorporates the Rp isomer of both ATPαB and the two boranophosphate analogs: 2′-O-methyladenosine 5′-(α-P-borano) triphosphate (2′-OMe ATPαB, 5a) and 3′-deoxyadenosine 5′-(α-P-borano) triphosphate (3′-dATPαB, 5b). The Rp diastereomer of ATPαB (6), having no ribose modifications, was found to be a slightly better substrate than natural ATP, showing a 42% decrease in the apparent Michaelis–Menten constant (Km). The IC50 of both 2′-O-Me and 3′-deoxy ATP was decreased with the boranophosphate modification up to 16-fold. This “borano effect” was further confirmed by determining the steady-state inhibitory constant (Ki), showing a comparable potency shift (21-fold). These experiments also indicate that the boranophosphate analogs 5a and 5b inhibit HCV NS5B through a competitive mode of inhibition. This evidence, together with previous crystal structure data, further supports the idea that HCV NS5B (in a similar manner to HIV-1 RT) discriminates against the 3′-deoxy modification via lost interactions between the 3′-OH on the ribose and the active site residues, or lost intramolecular hydrogen bonding interactions between the 3′-OH and the pyrophosphate leaving group during phosphoryl transfer. To our knowledge, these data represent the first time a phosphate modified NTP has been studied as a substrate for HCV NS5B RdRP. |
doi_str_mv | 10.1016/j.antiviral.2013.02.014 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3653414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016635421300051X</els_id><sourcerecordid>23466667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-68770dab5f627cbb4c4f542607a9032a43c8b7139b6333a8f1db74758c30a2733</originalsourceid><addsrcrecordid>eNqFkc2O0zAUhSMEYsrAK4A3LBPs2LETFkhVNTAjjQAhYGv5L4mrxI5st6LvwwvwIjwT7nQosMIb68rnfPf6nqJ4gWCFIKKvtpVwye5tEFNVQ4QrWFcQkQfFCrWsLjvY0YfFKitpiRtSXxRPYtxCCCnr2sfFRY0JzYetiu83brTSJusd8D0YzSJSriLYgDs6-PR-XWqzGKeNS8cKLH46zCaIaIA8gJ8_yo-l9EE4v4w-LqNIBridmoxPVpv4Glx9WyYfrBuAyN6UMTZzYwpZORxA7wOYjRqFs3EuZcZqcL35CnTYDSAD7OCeFo96MUXz7P6-LL68vfq8uS5vP7y72axvS0Vwk0raMga1kE1Pa6akJIr0-fMUMtFBXAuCVSsZwp2kGGPR9khLRljTKgxFzTC-LN6cuMtOzkarPGpeAV-CnUU4cC8s__fF2ZEPfs8xbTBBJAPYCaCCjzGY_uxFkB-D41t-Do4fg-Ow5vDO-fzv1mff76Sy4OW9QEQlpj4vXNn4R8cwxS3usm590pm8qL01gUdljVNG22BU4trb_w7zC1KGwBc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inhibition of hepatitis C viral RNA-dependent RNA polymerase by α-P-boranophosphate nucleotides: Exploring a potential strategy for mechanism-based HCV drug design</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Cheek, Marcus Adrian ; Sharaf, Mariam L. ; Dobrikov, Mikhail I. ; Shaw, Barbara Ramsay</creator><creatorcontrib>Cheek, Marcus Adrian ; Sharaf, Mariam L. ; Dobrikov, Mikhail I. ; Shaw, Barbara Ramsay</creatorcontrib><description>► α-P-BH3 modification increased incorporation of ribose modified ATP by HCV NS5BΔ55. ► Rp-ATPαB is a better substrate of HCV NS5BΔ55 RdRP than ATP. ► The NS5BΔ55 polymerase prefers the Rp stereoisomer of boranophosphate analogs. ► Rp-α-P-BH3 modification shifted the potency of 2′-OMe ATP and 3′-dATP 5- and 21-fold. ► Both ribose-modified ATPαB analogs exhibited a competitive mode of inhibition.
Improved treatments for chronic HCV infections remain a challenge, and new chemical strategies are needed to expand the current paradigm. The HCV RNA polymerase (RdRP) has been a target for antiviral development. For the first time we show that the boranophosphate (BP) modification increases the substrate efficiency of ATP analogs into HCV NS5BΔ55 RdRP-catalyzed RNA. Boranophosphate nucleotides contain a borane (BH3) group substituted for a non-bridging phosphoryl oxygen of a normal phosphate group, resulting in a class of modified isoelectronic DNA and RNA mimics capable of modulating the reading and writing of genetic information. We determine that HCV NS5BΔ55, being a stereospecific enzyme, incorporates the Rp isomer of both ATPαB and the two boranophosphate analogs: 2′-O-methyladenosine 5′-(α-P-borano) triphosphate (2′-OMe ATPαB, 5a) and 3′-deoxyadenosine 5′-(α-P-borano) triphosphate (3′-dATPαB, 5b). The Rp diastereomer of ATPαB (6), having no ribose modifications, was found to be a slightly better substrate than natural ATP, showing a 42% decrease in the apparent Michaelis–Menten constant (Km). The IC50 of both 2′-O-Me and 3′-deoxy ATP was decreased with the boranophosphate modification up to 16-fold. This “borano effect” was further confirmed by determining the steady-state inhibitory constant (Ki), showing a comparable potency shift (21-fold). These experiments also indicate that the boranophosphate analogs 5a and 5b inhibit HCV NS5B through a competitive mode of inhibition. This evidence, together with previous crystal structure data, further supports the idea that HCV NS5B (in a similar manner to HIV-1 RT) discriminates against the 3′-deoxy modification via lost interactions between the 3′-OH on the ribose and the active site residues, or lost intramolecular hydrogen bonding interactions between the 3′-OH and the pyrophosphate leaving group during phosphoryl transfer. To our knowledge, these data represent the first time a phosphate modified NTP has been studied as a substrate for HCV NS5B RdRP.</description><identifier>ISSN: 0166-3542</identifier><identifier>EISSN: 1872-9096</identifier><identifier>DOI: 10.1016/j.antiviral.2013.02.014</identifier><identifier>PMID: 23466667</identifier><identifier>CODEN: ARSRDR</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Antibiotics. Antiinfectious agents. Antiparasitic agents ; Antiviral agents ; Antiviral Agents - chemical synthesis ; Antiviral Agents - chemistry ; Antiviral Agents - pharmacology ; Biological and medical sciences ; Boranes - chemistry ; Boranes - pharmacology ; Boranophosphate ; Boron ; Drug Design ; Enzyme Inhibitors - chemical synthesis ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - pharmacology ; Enzyme kinetics ; Hepacivirus - drug effects ; Hepacivirus - enzymology ; Hepatitis C - drug therapy ; Hepatitis C - virology ; Hepatitis C virus ; Human viral diseases ; Humans ; Infectious diseases ; Isomerism ; Medical sciences ; NS5BΔ55 ; Nucleotides - chemistry ; Nucleotides - pharmacology ; Pharmacology. Drug treatments ; Phosphates - chemistry ; Phosphates - pharmacology ; RNA-Dependent RNA Polymerase - antagonists & inhibitors ; RNA-Dependent RNA Polymerase - metabolism ; Rp-5′-(α-P-borano) nucleoside triphosphate ; Viral diseases ; Viral hepatitis</subject><ispartof>Antiviral research, 2013-05, Vol.98 (2), p.144-152</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><rights>2013 Elsevier B.V. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-68770dab5f627cbb4c4f542607a9032a43c8b7139b6333a8f1db74758c30a2733</citedby><cites>FETCH-LOGICAL-c435t-68770dab5f627cbb4c4f542607a9032a43c8b7139b6333a8f1db74758c30a2733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.antiviral.2013.02.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27925,27926,45996</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27363839$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23466667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheek, Marcus Adrian</creatorcontrib><creatorcontrib>Sharaf, Mariam L.</creatorcontrib><creatorcontrib>Dobrikov, Mikhail I.</creatorcontrib><creatorcontrib>Shaw, Barbara Ramsay</creatorcontrib><title>Inhibition of hepatitis C viral RNA-dependent RNA polymerase by α-P-boranophosphate nucleotides: Exploring a potential strategy for mechanism-based HCV drug design</title><title>Antiviral research</title><addtitle>Antiviral Res</addtitle><description>► α-P-BH3 modification increased incorporation of ribose modified ATP by HCV NS5BΔ55. ► Rp-ATPαB is a better substrate of HCV NS5BΔ55 RdRP than ATP. ► The NS5BΔ55 polymerase prefers the Rp stereoisomer of boranophosphate analogs. ► Rp-α-P-BH3 modification shifted the potency of 2′-OMe ATP and 3′-dATP 5- and 21-fold. ► Both ribose-modified ATPαB analogs exhibited a competitive mode of inhibition.
Improved treatments for chronic HCV infections remain a challenge, and new chemical strategies are needed to expand the current paradigm. The HCV RNA polymerase (RdRP) has been a target for antiviral development. For the first time we show that the boranophosphate (BP) modification increases the substrate efficiency of ATP analogs into HCV NS5BΔ55 RdRP-catalyzed RNA. Boranophosphate nucleotides contain a borane (BH3) group substituted for a non-bridging phosphoryl oxygen of a normal phosphate group, resulting in a class of modified isoelectronic DNA and RNA mimics capable of modulating the reading and writing of genetic information. We determine that HCV NS5BΔ55, being a stereospecific enzyme, incorporates the Rp isomer of both ATPαB and the two boranophosphate analogs: 2′-O-methyladenosine 5′-(α-P-borano) triphosphate (2′-OMe ATPαB, 5a) and 3′-deoxyadenosine 5′-(α-P-borano) triphosphate (3′-dATPαB, 5b). The Rp diastereomer of ATPαB (6), having no ribose modifications, was found to be a slightly better substrate than natural ATP, showing a 42% decrease in the apparent Michaelis–Menten constant (Km). The IC50 of both 2′-O-Me and 3′-deoxy ATP was decreased with the boranophosphate modification up to 16-fold. This “borano effect” was further confirmed by determining the steady-state inhibitory constant (Ki), showing a comparable potency shift (21-fold). These experiments also indicate that the boranophosphate analogs 5a and 5b inhibit HCV NS5B through a competitive mode of inhibition. This evidence, together with previous crystal structure data, further supports the idea that HCV NS5B (in a similar manner to HIV-1 RT) discriminates against the 3′-deoxy modification via lost interactions between the 3′-OH on the ribose and the active site residues, or lost intramolecular hydrogen bonding interactions between the 3′-OH and the pyrophosphate leaving group during phosphoryl transfer. To our knowledge, these data represent the first time a phosphate modified NTP has been studied as a substrate for HCV NS5B RdRP.</description><subject>Antibiotics. Antiinfectious agents. Antiparasitic agents</subject><subject>Antiviral agents</subject><subject>Antiviral Agents - chemical synthesis</subject><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Boranes - chemistry</subject><subject>Boranes - pharmacology</subject><subject>Boranophosphate</subject><subject>Boron</subject><subject>Drug Design</subject><subject>Enzyme Inhibitors - chemical synthesis</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzyme kinetics</subject><subject>Hepacivirus - drug effects</subject><subject>Hepacivirus - enzymology</subject><subject>Hepatitis C - drug therapy</subject><subject>Hepatitis C - virology</subject><subject>Hepatitis C virus</subject><subject>Human viral diseases</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Isomerism</subject><subject>Medical sciences</subject><subject>NS5BΔ55</subject><subject>Nucleotides - chemistry</subject><subject>Nucleotides - pharmacology</subject><subject>Pharmacology. Drug treatments</subject><subject>Phosphates - chemistry</subject><subject>Phosphates - pharmacology</subject><subject>RNA-Dependent RNA Polymerase - antagonists & inhibitors</subject><subject>RNA-Dependent RNA Polymerase - metabolism</subject><subject>Rp-5′-(α-P-borano) nucleoside triphosphate</subject><subject>Viral diseases</subject><subject>Viral hepatitis</subject><issn>0166-3542</issn><issn>1872-9096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2O0zAUhSMEYsrAK4A3LBPs2LETFkhVNTAjjQAhYGv5L4mrxI5st6LvwwvwIjwT7nQosMIb68rnfPf6nqJ4gWCFIKKvtpVwye5tEFNVQ4QrWFcQkQfFCrWsLjvY0YfFKitpiRtSXxRPYtxCCCnr2sfFRY0JzYetiu83brTSJusd8D0YzSJSriLYgDs6-PR-XWqzGKeNS8cKLH46zCaIaIA8gJ8_yo-l9EE4v4w-LqNIBridmoxPVpv4Glx9WyYfrBuAyN6UMTZzYwpZORxA7wOYjRqFs3EuZcZqcL35CnTYDSAD7OCeFo96MUXz7P6-LL68vfq8uS5vP7y72axvS0Vwk0raMga1kE1Pa6akJIr0-fMUMtFBXAuCVSsZwp2kGGPR9khLRljTKgxFzTC-LN6cuMtOzkarPGpeAV-CnUU4cC8s__fF2ZEPfs8xbTBBJAPYCaCCjzGY_uxFkB-D41t-Do4fg-Ow5vDO-fzv1mff76Sy4OW9QEQlpj4vXNn4R8cwxS3usm590pm8qL01gUdljVNG22BU4trb_w7zC1KGwBc</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Cheek, Marcus Adrian</creator><creator>Sharaf, Mariam L.</creator><creator>Dobrikov, Mikhail I.</creator><creator>Shaw, Barbara Ramsay</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20130501</creationdate><title>Inhibition of hepatitis C viral RNA-dependent RNA polymerase by α-P-boranophosphate nucleotides: Exploring a potential strategy for mechanism-based HCV drug design</title><author>Cheek, Marcus Adrian ; Sharaf, Mariam L. ; Dobrikov, Mikhail I. ; Shaw, Barbara Ramsay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-68770dab5f627cbb4c4f542607a9032a43c8b7139b6333a8f1db74758c30a2733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antibiotics. Antiinfectious agents. Antiparasitic agents</topic><topic>Antiviral agents</topic><topic>Antiviral Agents - chemical synthesis</topic><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Boranes - chemistry</topic><topic>Boranes - pharmacology</topic><topic>Boranophosphate</topic><topic>Boron</topic><topic>Drug Design</topic><topic>Enzyme Inhibitors - chemical synthesis</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzyme kinetics</topic><topic>Hepacivirus - drug effects</topic><topic>Hepacivirus - enzymology</topic><topic>Hepatitis C - drug therapy</topic><topic>Hepatitis C - virology</topic><topic>Hepatitis C virus</topic><topic>Human viral diseases</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Isomerism</topic><topic>Medical sciences</topic><topic>NS5BΔ55</topic><topic>Nucleotides - chemistry</topic><topic>Nucleotides - pharmacology</topic><topic>Pharmacology. Drug treatments</topic><topic>Phosphates - chemistry</topic><topic>Phosphates - pharmacology</topic><topic>RNA-Dependent RNA Polymerase - antagonists & inhibitors</topic><topic>RNA-Dependent RNA Polymerase - metabolism</topic><topic>Rp-5′-(α-P-borano) nucleoside triphosphate</topic><topic>Viral diseases</topic><topic>Viral hepatitis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheek, Marcus Adrian</creatorcontrib><creatorcontrib>Sharaf, Mariam L.</creatorcontrib><creatorcontrib>Dobrikov, Mikhail I.</creatorcontrib><creatorcontrib>Shaw, Barbara Ramsay</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Antiviral research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheek, Marcus Adrian</au><au>Sharaf, Mariam L.</au><au>Dobrikov, Mikhail I.</au><au>Shaw, Barbara Ramsay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of hepatitis C viral RNA-dependent RNA polymerase by α-P-boranophosphate nucleotides: Exploring a potential strategy for mechanism-based HCV drug design</atitle><jtitle>Antiviral research</jtitle><addtitle>Antiviral Res</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>98</volume><issue>2</issue><spage>144</spage><epage>152</epage><pages>144-152</pages><issn>0166-3542</issn><eissn>1872-9096</eissn><coden>ARSRDR</coden><abstract>► α-P-BH3 modification increased incorporation of ribose modified ATP by HCV NS5BΔ55. ► Rp-ATPαB is a better substrate of HCV NS5BΔ55 RdRP than ATP. ► The NS5BΔ55 polymerase prefers the Rp stereoisomer of boranophosphate analogs. ► Rp-α-P-BH3 modification shifted the potency of 2′-OMe ATP and 3′-dATP 5- and 21-fold. ► Both ribose-modified ATPαB analogs exhibited a competitive mode of inhibition.
Improved treatments for chronic HCV infections remain a challenge, and new chemical strategies are needed to expand the current paradigm. The HCV RNA polymerase (RdRP) has been a target for antiviral development. For the first time we show that the boranophosphate (BP) modification increases the substrate efficiency of ATP analogs into HCV NS5BΔ55 RdRP-catalyzed RNA. Boranophosphate nucleotides contain a borane (BH3) group substituted for a non-bridging phosphoryl oxygen of a normal phosphate group, resulting in a class of modified isoelectronic DNA and RNA mimics capable of modulating the reading and writing of genetic information. We determine that HCV NS5BΔ55, being a stereospecific enzyme, incorporates the Rp isomer of both ATPαB and the two boranophosphate analogs: 2′-O-methyladenosine 5′-(α-P-borano) triphosphate (2′-OMe ATPαB, 5a) and 3′-deoxyadenosine 5′-(α-P-borano) triphosphate (3′-dATPαB, 5b). The Rp diastereomer of ATPαB (6), having no ribose modifications, was found to be a slightly better substrate than natural ATP, showing a 42% decrease in the apparent Michaelis–Menten constant (Km). The IC50 of both 2′-O-Me and 3′-deoxy ATP was decreased with the boranophosphate modification up to 16-fold. This “borano effect” was further confirmed by determining the steady-state inhibitory constant (Ki), showing a comparable potency shift (21-fold). These experiments also indicate that the boranophosphate analogs 5a and 5b inhibit HCV NS5B through a competitive mode of inhibition. This evidence, together with previous crystal structure data, further supports the idea that HCV NS5B (in a similar manner to HIV-1 RT) discriminates against the 3′-deoxy modification via lost interactions between the 3′-OH on the ribose and the active site residues, or lost intramolecular hydrogen bonding interactions between the 3′-OH and the pyrophosphate leaving group during phosphoryl transfer. To our knowledge, these data represent the first time a phosphate modified NTP has been studied as a substrate for HCV NS5B RdRP.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>23466667</pmid><doi>10.1016/j.antiviral.2013.02.014</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-3542 |
ispartof | Antiviral research, 2013-05, Vol.98 (2), p.144-152 |
issn | 0166-3542 1872-9096 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3653414 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Antibiotics. Antiinfectious agents. Antiparasitic agents Antiviral agents Antiviral Agents - chemical synthesis Antiviral Agents - chemistry Antiviral Agents - pharmacology Biological and medical sciences Boranes - chemistry Boranes - pharmacology Boranophosphate Boron Drug Design Enzyme Inhibitors - chemical synthesis Enzyme Inhibitors - chemistry Enzyme Inhibitors - pharmacology Enzyme kinetics Hepacivirus - drug effects Hepacivirus - enzymology Hepatitis C - drug therapy Hepatitis C - virology Hepatitis C virus Human viral diseases Humans Infectious diseases Isomerism Medical sciences NS5BΔ55 Nucleotides - chemistry Nucleotides - pharmacology Pharmacology. Drug treatments Phosphates - chemistry Phosphates - pharmacology RNA-Dependent RNA Polymerase - antagonists & inhibitors RNA-Dependent RNA Polymerase - metabolism Rp-5′-(α-P-borano) nucleoside triphosphate Viral diseases Viral hepatitis |
title | Inhibition of hepatitis C viral RNA-dependent RNA polymerase by α-P-boranophosphate nucleotides: Exploring a potential strategy for mechanism-based HCV drug design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20hepatitis%20C%20viral%20RNA-dependent%20RNA%20polymerase%20by%20%CE%B1-P-boranophosphate%20nucleotides:%20Exploring%20a%20potential%20strategy%20for%20mechanism-based%20HCV%20drug%20design&rft.jtitle=Antiviral%20research&rft.au=Cheek,%20Marcus%20Adrian&rft.date=2013-05-01&rft.volume=98&rft.issue=2&rft.spage=144&rft.epage=152&rft.pages=144-152&rft.issn=0166-3542&rft.eissn=1872-9096&rft.coden=ARSRDR&rft_id=info:doi/10.1016/j.antiviral.2013.02.014&rft_dat=%3Cpubmed_cross%3E23466667%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23466667&rft_els_id=S016635421300051X&rfr_iscdi=true |