A Sound Processor for Cochlear Implant Using a Simple Dual Path Nonlinear Model of Basilar Membrane
We propose a new active nonlinear model of the frequency response of the basilar membrane in biological cochlea called the simple dual path nonlinear (SDPN) model and a novel sound processing strategy for cochlear implants (CIs) based upon this model. The SDPN model was developed to utilize the adva...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2013-01, Vol.2013 (2013), p.1-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2013 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2013 |
creator | Kim, Kyung Hwan Kim, Jin Ho Choi, Sung Jin |
description | We propose a new active nonlinear model of the frequency response of the basilar membrane in biological cochlea called the simple dual path nonlinear (SDPN) model and a novel sound processing strategy for cochlear implants (CIs) based upon this model. The SDPN model was developed to utilize the advantages of the level-dependent frequency response characteristics of the basilar membrane for robust formant representation under noisy conditions. In comparison to the dual resonance nonlinear model (DRNL) which was previously proposed as an active nonlinear model of the basilar membrane, the SDPN model can reproduce similar level-dependent frequency responses with a much simpler structure and is thus better suited for incorporation into CI sound processors. By the analysis of dominant frequency component, it was confirmed that the formants of speech are more robustly represented after frequency decomposition by the nonlinear filterbank using SDPN, compared to a linear bandpass filter array which is used in conventional strategies. Acoustic simulation and hearing experiments in subjects with normal hearing showed that the proposed strategy results in better syllable recognition under speech-shaped noise compared to the conventional strategy based on fixed linear bandpass filters. |
doi_str_mv | 10.1155/2013/153039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3652108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1353985467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-24d96ec580e1e7479e48b567fcfea04abddf4b471e7192daba583dd26f66c82b3</originalsourceid><addsrcrecordid>eNqFkc9rFTEQx4MotlZPnpUcRXk22fzci1Cf9gdULdSCt5BNJn2R3eSZ7Cr9793H1oeePAwzzHz4zjBfhJ5T8pZSIY4bQtkxFYyw9gE6pIrrlVRUP9zX5NsBelLrd0IEVYI-RgcNky3RqjlE7gRf5yl5fFWyg1pzwWGOdXabHmzBF8O2t2nENzWmW2zxdZwbgD9MtsdXdtzgzzn1Me3QT9lDj3PA722N_a4BQ1dsgqfoUbB9hWf3-QjdnH78uj5fXX45u1ifXK4cZ3pcNdy3EpzQBCgorlrguhNSBRfAEm477wPvuJqHtG287azQzPtGBimdbjp2hN4tutupG8A7SGOxvdmWONhyZ7KN5t9Jihtzm38aJkVDiZ4FXt0LlPxjgjqaIVYH_fwByFM1lAnWasGlmtE3C-pKrrVA2K-hxOxsMTtbzGLLTL_8-7I9-8eHGXi9AJuYvP0V_6P2YoFhRiDYPcwFIVSz30Mon2c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1353985467</pqid></control><display><type>article</type><title>A Sound Processor for Cochlear Implant Using a Simple Dual Path Nonlinear Model of Basilar Membrane</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kim, Kyung Hwan ; Kim, Jin Ho ; Choi, Sung Jin</creator><contributor>Im, Chang-Hwan</contributor><creatorcontrib>Kim, Kyung Hwan ; Kim, Jin Ho ; Choi, Sung Jin ; Im, Chang-Hwan</creatorcontrib><description>We propose a new active nonlinear model of the frequency response of the basilar membrane in biological cochlea called the simple dual path nonlinear (SDPN) model and a novel sound processing strategy for cochlear implants (CIs) based upon this model. The SDPN model was developed to utilize the advantages of the level-dependent frequency response characteristics of the basilar membrane for robust formant representation under noisy conditions. In comparison to the dual resonance nonlinear model (DRNL) which was previously proposed as an active nonlinear model of the basilar membrane, the SDPN model can reproduce similar level-dependent frequency responses with a much simpler structure and is thus better suited for incorporation into CI sound processors. By the analysis of dominant frequency component, it was confirmed that the formants of speech are more robustly represented after frequency decomposition by the nonlinear filterbank using SDPN, compared to a linear bandpass filter array which is used in conventional strategies. Acoustic simulation and hearing experiments in subjects with normal hearing showed that the proposed strategy results in better syllable recognition under speech-shaped noise compared to the conventional strategy based on fixed linear bandpass filters.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2013/153039</identifier><identifier>PMID: 23690872</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Acoustic Stimulation ; Adult ; Algorithms ; Basilar Membrane - physiology ; Cochlear Implants - statistics & numerical data ; Computational Biology ; Female ; Hearing - physiology ; Humans ; Male ; Models, Biological ; Nonlinear Dynamics ; Speech Acoustics ; Speech Perception - physiology ; Young Adult</subject><ispartof>Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-11</ispartof><rights>Copyright © 2013 Kyung Hwan Kim et al.</rights><rights>Copyright © 2013 Kyung Hwan Kim et al. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-24d96ec580e1e7479e48b567fcfea04abddf4b471e7192daba583dd26f66c82b3</citedby><cites>FETCH-LOGICAL-c438t-24d96ec580e1e7479e48b567fcfea04abddf4b471e7192daba583dd26f66c82b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652108/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652108/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23690872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Im, Chang-Hwan</contributor><creatorcontrib>Kim, Kyung Hwan</creatorcontrib><creatorcontrib>Kim, Jin Ho</creatorcontrib><creatorcontrib>Choi, Sung Jin</creatorcontrib><title>A Sound Processor for Cochlear Implant Using a Simple Dual Path Nonlinear Model of Basilar Membrane</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>We propose a new active nonlinear model of the frequency response of the basilar membrane in biological cochlea called the simple dual path nonlinear (SDPN) model and a novel sound processing strategy for cochlear implants (CIs) based upon this model. The SDPN model was developed to utilize the advantages of the level-dependent frequency response characteristics of the basilar membrane for robust formant representation under noisy conditions. In comparison to the dual resonance nonlinear model (DRNL) which was previously proposed as an active nonlinear model of the basilar membrane, the SDPN model can reproduce similar level-dependent frequency responses with a much simpler structure and is thus better suited for incorporation into CI sound processors. By the analysis of dominant frequency component, it was confirmed that the formants of speech are more robustly represented after frequency decomposition by the nonlinear filterbank using SDPN, compared to a linear bandpass filter array which is used in conventional strategies. Acoustic simulation and hearing experiments in subjects with normal hearing showed that the proposed strategy results in better syllable recognition under speech-shaped noise compared to the conventional strategy based on fixed linear bandpass filters.</description><subject>Acoustic Stimulation</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Basilar Membrane - physiology</subject><subject>Cochlear Implants - statistics & numerical data</subject><subject>Computational Biology</subject><subject>Female</subject><subject>Hearing - physiology</subject><subject>Humans</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Nonlinear Dynamics</subject><subject>Speech Acoustics</subject><subject>Speech Perception - physiology</subject><subject>Young Adult</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9rFTEQx4MotlZPnpUcRXk22fzci1Cf9gdULdSCt5BNJn2R3eSZ7Cr9793H1oeePAwzzHz4zjBfhJ5T8pZSIY4bQtkxFYyw9gE6pIrrlVRUP9zX5NsBelLrd0IEVYI-RgcNky3RqjlE7gRf5yl5fFWyg1pzwWGOdXabHmzBF8O2t2nENzWmW2zxdZwbgD9MtsdXdtzgzzn1Me3QT9lDj3PA722N_a4BQ1dsgqfoUbB9hWf3-QjdnH78uj5fXX45u1ifXK4cZ3pcNdy3EpzQBCgorlrguhNSBRfAEm477wPvuJqHtG287azQzPtGBimdbjp2hN4tutupG8A7SGOxvdmWONhyZ7KN5t9Jihtzm38aJkVDiZ4FXt0LlPxjgjqaIVYH_fwByFM1lAnWasGlmtE3C-pKrrVA2K-hxOxsMTtbzGLLTL_8-7I9-8eHGXi9AJuYvP0V_6P2YoFhRiDYPcwFIVSz30Mon2c</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Kim, Kyung Hwan</creator><creator>Kim, Jin Ho</creator><creator>Choi, Sung Jin</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130101</creationdate><title>A Sound Processor for Cochlear Implant Using a Simple Dual Path Nonlinear Model of Basilar Membrane</title><author>Kim, Kyung Hwan ; Kim, Jin Ho ; Choi, Sung Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-24d96ec580e1e7479e48b567fcfea04abddf4b471e7192daba583dd26f66c82b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acoustic Stimulation</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Basilar Membrane - physiology</topic><topic>Cochlear Implants - statistics & numerical data</topic><topic>Computational Biology</topic><topic>Female</topic><topic>Hearing - physiology</topic><topic>Humans</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Nonlinear Dynamics</topic><topic>Speech Acoustics</topic><topic>Speech Perception - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyung Hwan</creatorcontrib><creatorcontrib>Kim, Jin Ho</creatorcontrib><creatorcontrib>Choi, Sung Jin</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyung Hwan</au><au>Kim, Jin Ho</au><au>Choi, Sung Jin</au><au>Im, Chang-Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Sound Processor for Cochlear Implant Using a Simple Dual Path Nonlinear Model of Basilar Membrane</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>We propose a new active nonlinear model of the frequency response of the basilar membrane in biological cochlea called the simple dual path nonlinear (SDPN) model and a novel sound processing strategy for cochlear implants (CIs) based upon this model. The SDPN model was developed to utilize the advantages of the level-dependent frequency response characteristics of the basilar membrane for robust formant representation under noisy conditions. In comparison to the dual resonance nonlinear model (DRNL) which was previously proposed as an active nonlinear model of the basilar membrane, the SDPN model can reproduce similar level-dependent frequency responses with a much simpler structure and is thus better suited for incorporation into CI sound processors. By the analysis of dominant frequency component, it was confirmed that the formants of speech are more robustly represented after frequency decomposition by the nonlinear filterbank using SDPN, compared to a linear bandpass filter array which is used in conventional strategies. Acoustic simulation and hearing experiments in subjects with normal hearing showed that the proposed strategy results in better syllable recognition under speech-shaped noise compared to the conventional strategy based on fixed linear bandpass filters.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>23690872</pmid><doi>10.1155/2013/153039</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-11 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3652108 |
source | MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection |
subjects | Acoustic Stimulation Adult Algorithms Basilar Membrane - physiology Cochlear Implants - statistics & numerical data Computational Biology Female Hearing - physiology Humans Male Models, Biological Nonlinear Dynamics Speech Acoustics Speech Perception - physiology Young Adult |
title | A Sound Processor for Cochlear Implant Using a Simple Dual Path Nonlinear Model of Basilar Membrane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Sound%20Processor%20for%20Cochlear%20Implant%20Using%20a%20Simple%20Dual%20Path%20Nonlinear%20Model%20of%20Basilar%20Membrane&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Kim,%20Kyung%20Hwan&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2013/153039&rft_dat=%3Cproquest_pubme%3E1353985467%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1353985467&rft_id=info:pmid/23690872&rfr_iscdi=true |