A Sound Processor for Cochlear Implant Using a Simple Dual Path Nonlinear Model of Basilar Membrane

We propose a new active nonlinear model of the frequency response of the basilar membrane in biological cochlea called the simple dual path nonlinear (SDPN) model and a novel sound processing strategy for cochlear implants (CIs) based upon this model. The SDPN model was developed to utilize the adva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2013-01, Vol.2013 (2013), p.1-11
Hauptverfasser: Kim, Kyung Hwan, Kim, Jin Ho, Choi, Sung Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2013
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2013
creator Kim, Kyung Hwan
Kim, Jin Ho
Choi, Sung Jin
description We propose a new active nonlinear model of the frequency response of the basilar membrane in biological cochlea called the simple dual path nonlinear (SDPN) model and a novel sound processing strategy for cochlear implants (CIs) based upon this model. The SDPN model was developed to utilize the advantages of the level-dependent frequency response characteristics of the basilar membrane for robust formant representation under noisy conditions. In comparison to the dual resonance nonlinear model (DRNL) which was previously proposed as an active nonlinear model of the basilar membrane, the SDPN model can reproduce similar level-dependent frequency responses with a much simpler structure and is thus better suited for incorporation into CI sound processors. By the analysis of dominant frequency component, it was confirmed that the formants of speech are more robustly represented after frequency decomposition by the nonlinear filterbank using SDPN, compared to a linear bandpass filter array which is used in conventional strategies. Acoustic simulation and hearing experiments in subjects with normal hearing showed that the proposed strategy results in better syllable recognition under speech-shaped noise compared to the conventional strategy based on fixed linear bandpass filters.
doi_str_mv 10.1155/2013/153039
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3652108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1353985467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-24d96ec580e1e7479e48b567fcfea04abddf4b471e7192daba583dd26f66c82b3</originalsourceid><addsrcrecordid>eNqFkc9rFTEQx4MotlZPnpUcRXk22fzci1Cf9gdULdSCt5BNJn2R3eSZ7Cr9793H1oeePAwzzHz4zjBfhJ5T8pZSIY4bQtkxFYyw9gE6pIrrlVRUP9zX5NsBelLrd0IEVYI-RgcNky3RqjlE7gRf5yl5fFWyg1pzwWGOdXabHmzBF8O2t2nENzWmW2zxdZwbgD9MtsdXdtzgzzn1Me3QT9lDj3PA722N_a4BQ1dsgqfoUbB9hWf3-QjdnH78uj5fXX45u1ifXK4cZ3pcNdy3EpzQBCgorlrguhNSBRfAEm477wPvuJqHtG287azQzPtGBimdbjp2hN4tutupG8A7SGOxvdmWONhyZ7KN5t9Jihtzm38aJkVDiZ4FXt0LlPxjgjqaIVYH_fwByFM1lAnWasGlmtE3C-pKrrVA2K-hxOxsMTtbzGLLTL_8-7I9-8eHGXi9AJuYvP0V_6P2YoFhRiDYPcwFIVSz30Mon2c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1353985467</pqid></control><display><type>article</type><title>A Sound Processor for Cochlear Implant Using a Simple Dual Path Nonlinear Model of Basilar Membrane</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kim, Kyung Hwan ; Kim, Jin Ho ; Choi, Sung Jin</creator><contributor>Im, Chang-Hwan</contributor><creatorcontrib>Kim, Kyung Hwan ; Kim, Jin Ho ; Choi, Sung Jin ; Im, Chang-Hwan</creatorcontrib><description>We propose a new active nonlinear model of the frequency response of the basilar membrane in biological cochlea called the simple dual path nonlinear (SDPN) model and a novel sound processing strategy for cochlear implants (CIs) based upon this model. The SDPN model was developed to utilize the advantages of the level-dependent frequency response characteristics of the basilar membrane for robust formant representation under noisy conditions. In comparison to the dual resonance nonlinear model (DRNL) which was previously proposed as an active nonlinear model of the basilar membrane, the SDPN model can reproduce similar level-dependent frequency responses with a much simpler structure and is thus better suited for incorporation into CI sound processors. By the analysis of dominant frequency component, it was confirmed that the formants of speech are more robustly represented after frequency decomposition by the nonlinear filterbank using SDPN, compared to a linear bandpass filter array which is used in conventional strategies. Acoustic simulation and hearing experiments in subjects with normal hearing showed that the proposed strategy results in better syllable recognition under speech-shaped noise compared to the conventional strategy based on fixed linear bandpass filters.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2013/153039</identifier><identifier>PMID: 23690872</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Acoustic Stimulation ; Adult ; Algorithms ; Basilar Membrane - physiology ; Cochlear Implants - statistics &amp; numerical data ; Computational Biology ; Female ; Hearing - physiology ; Humans ; Male ; Models, Biological ; Nonlinear Dynamics ; Speech Acoustics ; Speech Perception - physiology ; Young Adult</subject><ispartof>Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-11</ispartof><rights>Copyright © 2013 Kyung Hwan Kim et al.</rights><rights>Copyright © 2013 Kyung Hwan Kim et al. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-24d96ec580e1e7479e48b567fcfea04abddf4b471e7192daba583dd26f66c82b3</citedby><cites>FETCH-LOGICAL-c438t-24d96ec580e1e7479e48b567fcfea04abddf4b471e7192daba583dd26f66c82b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652108/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652108/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23690872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Im, Chang-Hwan</contributor><creatorcontrib>Kim, Kyung Hwan</creatorcontrib><creatorcontrib>Kim, Jin Ho</creatorcontrib><creatorcontrib>Choi, Sung Jin</creatorcontrib><title>A Sound Processor for Cochlear Implant Using a Simple Dual Path Nonlinear Model of Basilar Membrane</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>We propose a new active nonlinear model of the frequency response of the basilar membrane in biological cochlea called the simple dual path nonlinear (SDPN) model and a novel sound processing strategy for cochlear implants (CIs) based upon this model. The SDPN model was developed to utilize the advantages of the level-dependent frequency response characteristics of the basilar membrane for robust formant representation under noisy conditions. In comparison to the dual resonance nonlinear model (DRNL) which was previously proposed as an active nonlinear model of the basilar membrane, the SDPN model can reproduce similar level-dependent frequency responses with a much simpler structure and is thus better suited for incorporation into CI sound processors. By the analysis of dominant frequency component, it was confirmed that the formants of speech are more robustly represented after frequency decomposition by the nonlinear filterbank using SDPN, compared to a linear bandpass filter array which is used in conventional strategies. Acoustic simulation and hearing experiments in subjects with normal hearing showed that the proposed strategy results in better syllable recognition under speech-shaped noise compared to the conventional strategy based on fixed linear bandpass filters.</description><subject>Acoustic Stimulation</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Basilar Membrane - physiology</subject><subject>Cochlear Implants - statistics &amp; numerical data</subject><subject>Computational Biology</subject><subject>Female</subject><subject>Hearing - physiology</subject><subject>Humans</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Nonlinear Dynamics</subject><subject>Speech Acoustics</subject><subject>Speech Perception - physiology</subject><subject>Young Adult</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9rFTEQx4MotlZPnpUcRXk22fzci1Cf9gdULdSCt5BNJn2R3eSZ7Cr9793H1oeePAwzzHz4zjBfhJ5T8pZSIY4bQtkxFYyw9gE6pIrrlVRUP9zX5NsBelLrd0IEVYI-RgcNky3RqjlE7gRf5yl5fFWyg1pzwWGOdXabHmzBF8O2t2nENzWmW2zxdZwbgD9MtsdXdtzgzzn1Me3QT9lDj3PA722N_a4BQ1dsgqfoUbB9hWf3-QjdnH78uj5fXX45u1ifXK4cZ3pcNdy3EpzQBCgorlrguhNSBRfAEm477wPvuJqHtG287azQzPtGBimdbjp2hN4tutupG8A7SGOxvdmWONhyZ7KN5t9Jihtzm38aJkVDiZ4FXt0LlPxjgjqaIVYH_fwByFM1lAnWasGlmtE3C-pKrrVA2K-hxOxsMTtbzGLLTL_8-7I9-8eHGXi9AJuYvP0V_6P2YoFhRiDYPcwFIVSz30Mon2c</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Kim, Kyung Hwan</creator><creator>Kim, Jin Ho</creator><creator>Choi, Sung Jin</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130101</creationdate><title>A Sound Processor for Cochlear Implant Using a Simple Dual Path Nonlinear Model of Basilar Membrane</title><author>Kim, Kyung Hwan ; Kim, Jin Ho ; Choi, Sung Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-24d96ec580e1e7479e48b567fcfea04abddf4b471e7192daba583dd26f66c82b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acoustic Stimulation</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Basilar Membrane - physiology</topic><topic>Cochlear Implants - statistics &amp; numerical data</topic><topic>Computational Biology</topic><topic>Female</topic><topic>Hearing - physiology</topic><topic>Humans</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Nonlinear Dynamics</topic><topic>Speech Acoustics</topic><topic>Speech Perception - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyung Hwan</creatorcontrib><creatorcontrib>Kim, Jin Ho</creatorcontrib><creatorcontrib>Choi, Sung Jin</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyung Hwan</au><au>Kim, Jin Ho</au><au>Choi, Sung Jin</au><au>Im, Chang-Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Sound Processor for Cochlear Implant Using a Simple Dual Path Nonlinear Model of Basilar Membrane</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>We propose a new active nonlinear model of the frequency response of the basilar membrane in biological cochlea called the simple dual path nonlinear (SDPN) model and a novel sound processing strategy for cochlear implants (CIs) based upon this model. The SDPN model was developed to utilize the advantages of the level-dependent frequency response characteristics of the basilar membrane for robust formant representation under noisy conditions. In comparison to the dual resonance nonlinear model (DRNL) which was previously proposed as an active nonlinear model of the basilar membrane, the SDPN model can reproduce similar level-dependent frequency responses with a much simpler structure and is thus better suited for incorporation into CI sound processors. By the analysis of dominant frequency component, it was confirmed that the formants of speech are more robustly represented after frequency decomposition by the nonlinear filterbank using SDPN, compared to a linear bandpass filter array which is used in conventional strategies. Acoustic simulation and hearing experiments in subjects with normal hearing showed that the proposed strategy results in better syllable recognition under speech-shaped noise compared to the conventional strategy based on fixed linear bandpass filters.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>23690872</pmid><doi>10.1155/2013/153039</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-11
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3652108
source MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects Acoustic Stimulation
Adult
Algorithms
Basilar Membrane - physiology
Cochlear Implants - statistics & numerical data
Computational Biology
Female
Hearing - physiology
Humans
Male
Models, Biological
Nonlinear Dynamics
Speech Acoustics
Speech Perception - physiology
Young Adult
title A Sound Processor for Cochlear Implant Using a Simple Dual Path Nonlinear Model of Basilar Membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Sound%20Processor%20for%20Cochlear%20Implant%20Using%20a%20Simple%20Dual%20Path%20Nonlinear%20Model%20of%20Basilar%20Membrane&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Kim,%20Kyung%20Hwan&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2013/153039&rft_dat=%3Cproquest_pubme%3E1353985467%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1353985467&rft_id=info:pmid/23690872&rfr_iscdi=true