Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity

Hyperaldosteronism is associated with impaired vascular reactivity; however, the mechanisms by which aldosterone promotes endothelial dysfunction remain unknown. Glucose-6-phosphate dehydrogenase (G6PD) modulates vascular function by limiting oxidant stress to preserve bioavailable nitric oxide (NO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2007-02, Vol.13 (2), p.189-197
Hauptverfasser: Leopold, Jane A, Dam, Aamir, Maron, Bradley A, Scribner, Anne W, Liao, Ronglih, Handy, Diane E, Stanton, Robert C, Pitt, Bertram, Loscalzo, Joseph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 197
container_issue 2
container_start_page 189
container_title Nature medicine
container_volume 13
creator Leopold, Jane A
Dam, Aamir
Maron, Bradley A
Scribner, Anne W
Liao, Ronglih
Handy, Diane E
Stanton, Robert C
Pitt, Bertram
Loscalzo, Joseph
description Hyperaldosteronism is associated with impaired vascular reactivity; however, the mechanisms by which aldosterone promotes endothelial dysfunction remain unknown. Glucose-6-phosphate dehydrogenase (G6PD) modulates vascular function by limiting oxidant stress to preserve bioavailable nitric oxide (NO • ). Here we show that aldosterone (10 −9 –;10 −7 mol/l) decreased endothelial G6PD expression and activity in vitro , resulting in increased oxidant stress and decreased NO • levels—similar to what is observed in G6PD-deficient endothelial cells. Aldosterone decreased G6PD expression by increasing expression of the cyclic AMP−response element modulator (CREM) to inhibit cyclic AMP−response element binding protein (CREB)-mediated G6PD transcription. In vivo , infusion of aldosterone decreased vascular G6PD expression and impaired vascular reactivity. These effects were abrogated by spironolactone or vascular gene transfer of G6pd . These findings demonstrate that aldosterone induces a G6PD-deficient phenotype to impair endothelial function; aldosterone antagonism or gene transfer of G6pd improves vascular reactivity by restoring G6PD activity.
doi_str_mv 10.1038/nm1545
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3648863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A192447443</galeid><sourcerecordid>A192447443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-d79783de8a016f17ec1b1b3374da7034a4dffeca1eae21939ce1e7e9eb058c0b3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXAL0Ao4lDEIcWOEzu5IK0qPipVqsSXuBnHmSSuHDu1nRX77_EqS9uFPSAfxpp55h359STJc4zOMCLVWzPisigfJMcx0Awz9ONhvCNWZVVd0qPkiffXCCGCyvpxcoRZzgim1XHyc6Vb6wM4ayBV4ySU8-laeDlr4VIHQga1VmGTNpu0BRkTXpk-7fUsrYeMZtNg_TSIALE8bFpnezDCQ_qn8WnyqBPaw7NdPEm-fXj_9fxTdnn18eJ8dZlJmqOQtaxmFWmhEgjTDjOQuMENIaxoBUOkEEXbdSAFBgE5rkktAQODGhpUVhI15CR5t-hOczNCK8EEJzSfnBqF23ArFN-vGDXw3q45oUVVURIFTncCzt7M4AMflZegtTBgZ89pVdcUsS346i_w2s7OxMfxPCcYU1ywCGUL1AsNXJnOxqEyegNxdvS6UzG9wnVeFKwotqJnB_h4WhiVPNjwZq8hMgF-hV7M3vOLL5__n736vs-e3mMHEDoM3uo5KGv8QVA6672D7tZrjPh2J_mykxF8ef9n7rDdEkbg9QL4WDI9uDtD_5F6sZBGhNnBrdSu_BvRvPMY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223116147</pqid></control><display><type>article</type><title>Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Leopold, Jane A ; Dam, Aamir ; Maron, Bradley A ; Scribner, Anne W ; Liao, Ronglih ; Handy, Diane E ; Stanton, Robert C ; Pitt, Bertram ; Loscalzo, Joseph</creator><creatorcontrib>Leopold, Jane A ; Dam, Aamir ; Maron, Bradley A ; Scribner, Anne W ; Liao, Ronglih ; Handy, Diane E ; Stanton, Robert C ; Pitt, Bertram ; Loscalzo, Joseph</creatorcontrib><description>Hyperaldosteronism is associated with impaired vascular reactivity; however, the mechanisms by which aldosterone promotes endothelial dysfunction remain unknown. Glucose-6-phosphate dehydrogenase (G6PD) modulates vascular function by limiting oxidant stress to preserve bioavailable nitric oxide (NO • ). Here we show that aldosterone (10 −9 –;10 −7 mol/l) decreased endothelial G6PD expression and activity in vitro , resulting in increased oxidant stress and decreased NO • levels—similar to what is observed in G6PD-deficient endothelial cells. Aldosterone decreased G6PD expression by increasing expression of the cyclic AMP−response element modulator (CREM) to inhibit cyclic AMP−response element binding protein (CREB)-mediated G6PD transcription. In vivo , infusion of aldosterone decreased vascular G6PD expression and impaired vascular reactivity. These effects were abrogated by spironolactone or vascular gene transfer of G6pd . These findings demonstrate that aldosterone induces a G6PD-deficient phenotype to impair endothelial function; aldosterone antagonism or gene transfer of G6pd improves vascular reactivity by restoring G6PD activity.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/nm1545</identifier><identifier>PMID: 17273168</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Aldosterone - pharmacology ; Analysis of Variance ; Binding sites ; Biomedical and Life Sciences ; Biomedicine ; Blotting, Northern ; Cancer Research ; Cells, Cultured ; Chromatin Immunoprecipitation ; Cyclic AMP - metabolism ; Cyclic AMP Response Element Modulator - metabolism ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Dehydrogenase ; DNA Primers ; Electrophoretic Mobility Shift Assay ; Endothelium, Vascular - drug effects ; Gene expression ; Gene Expression Regulation, Enzymologic - drug effects ; Gene Transfer Techniques ; Glucose ; Glucosephosphate Dehydrogenase - genetics ; Glucosephosphate Dehydrogenase - metabolism ; Humans ; Immunoblotting ; Infectious Diseases ; Metabolic Diseases ; Mineralocorticoid Receptor Antagonists - pharmacology ; Molecular Medicine ; Neurosciences ; Nitric oxide ; Nitric Oxide - metabolism ; Oxidizing agents ; Proteins ; Spironolactone - pharmacology ; Veins &amp; arteries</subject><ispartof>Nature medicine, 2007-02, Vol.13 (2), p.189-197</ispartof><rights>Springer Nature America, Inc. 2007</rights><rights>COPYRIGHT 2007 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-d79783de8a016f17ec1b1b3374da7034a4dffeca1eae21939ce1e7e9eb058c0b3</citedby><cites>FETCH-LOGICAL-c620t-d79783de8a016f17ec1b1b3374da7034a4dffeca1eae21939ce1e7e9eb058c0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17273168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leopold, Jane A</creatorcontrib><creatorcontrib>Dam, Aamir</creatorcontrib><creatorcontrib>Maron, Bradley A</creatorcontrib><creatorcontrib>Scribner, Anne W</creatorcontrib><creatorcontrib>Liao, Ronglih</creatorcontrib><creatorcontrib>Handy, Diane E</creatorcontrib><creatorcontrib>Stanton, Robert C</creatorcontrib><creatorcontrib>Pitt, Bertram</creatorcontrib><creatorcontrib>Loscalzo, Joseph</creatorcontrib><title>Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Hyperaldosteronism is associated with impaired vascular reactivity; however, the mechanisms by which aldosterone promotes endothelial dysfunction remain unknown. Glucose-6-phosphate dehydrogenase (G6PD) modulates vascular function by limiting oxidant stress to preserve bioavailable nitric oxide (NO • ). Here we show that aldosterone (10 −9 –;10 −7 mol/l) decreased endothelial G6PD expression and activity in vitro , resulting in increased oxidant stress and decreased NO • levels—similar to what is observed in G6PD-deficient endothelial cells. Aldosterone decreased G6PD expression by increasing expression of the cyclic AMP−response element modulator (CREM) to inhibit cyclic AMP−response element binding protein (CREB)-mediated G6PD transcription. In vivo , infusion of aldosterone decreased vascular G6PD expression and impaired vascular reactivity. These effects were abrogated by spironolactone or vascular gene transfer of G6pd . These findings demonstrate that aldosterone induces a G6PD-deficient phenotype to impair endothelial function; aldosterone antagonism or gene transfer of G6pd improves vascular reactivity by restoring G6PD activity.</description><subject>Aldosterone - pharmacology</subject><subject>Analysis of Variance</subject><subject>Binding sites</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blotting, Northern</subject><subject>Cancer Research</subject><subject>Cells, Cultured</subject><subject>Chromatin Immunoprecipitation</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic AMP Response Element Modulator - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Dehydrogenase</subject><subject>DNA Primers</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Endothelium, Vascular - drug effects</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Enzymologic - drug effects</subject><subject>Gene Transfer Techniques</subject><subject>Glucose</subject><subject>Glucosephosphate Dehydrogenase - genetics</subject><subject>Glucosephosphate Dehydrogenase - metabolism</subject><subject>Humans</subject><subject>Immunoblotting</subject><subject>Infectious Diseases</subject><subject>Metabolic Diseases</subject><subject>Mineralocorticoid Receptor Antagonists - pharmacology</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Oxidizing agents</subject><subject>Proteins</subject><subject>Spironolactone - pharmacology</subject><subject>Veins &amp; arteries</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk1v1DAQhiMEoqXAL0Ao4lDEIcWOEzu5IK0qPipVqsSXuBnHmSSuHDu1nRX77_EqS9uFPSAfxpp55h359STJc4zOMCLVWzPisigfJMcx0Awz9ONhvCNWZVVd0qPkiffXCCGCyvpxcoRZzgim1XHyc6Vb6wM4ayBV4ySU8-laeDlr4VIHQga1VmGTNpu0BRkTXpk-7fUsrYeMZtNg_TSIALE8bFpnezDCQ_qn8WnyqBPaw7NdPEm-fXj_9fxTdnn18eJ8dZlJmqOQtaxmFWmhEgjTDjOQuMENIaxoBUOkEEXbdSAFBgE5rkktAQODGhpUVhI15CR5t-hOczNCK8EEJzSfnBqF23ArFN-vGDXw3q45oUVVURIFTncCzt7M4AMflZegtTBgZ89pVdcUsS346i_w2s7OxMfxPCcYU1ywCGUL1AsNXJnOxqEyegNxdvS6UzG9wnVeFKwotqJnB_h4WhiVPNjwZq8hMgF-hV7M3vOLL5__n736vs-e3mMHEDoM3uo5KGv8QVA6672D7tZrjPh2J_mykxF8ef9n7rDdEkbg9QL4WDI9uDtD_5F6sZBGhNnBrdSu_BvRvPMY</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Leopold, Jane A</creator><creator>Dam, Aamir</creator><creator>Maron, Bradley A</creator><creator>Scribner, Anne W</creator><creator>Liao, Ronglih</creator><creator>Handy, Diane E</creator><creator>Stanton, Robert C</creator><creator>Pitt, Bertram</creator><creator>Loscalzo, Joseph</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070201</creationdate><title>Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity</title><author>Leopold, Jane A ; Dam, Aamir ; Maron, Bradley A ; Scribner, Anne W ; Liao, Ronglih ; Handy, Diane E ; Stanton, Robert C ; Pitt, Bertram ; Loscalzo, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-d79783de8a016f17ec1b1b3374da7034a4dffeca1eae21939ce1e7e9eb058c0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aldosterone - pharmacology</topic><topic>Analysis of Variance</topic><topic>Binding sites</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blotting, Northern</topic><topic>Cancer Research</topic><topic>Cells, Cultured</topic><topic>Chromatin Immunoprecipitation</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic AMP Response Element Modulator - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Dehydrogenase</topic><topic>DNA Primers</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Endothelium, Vascular - drug effects</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Enzymologic - drug effects</topic><topic>Gene Transfer Techniques</topic><topic>Glucose</topic><topic>Glucosephosphate Dehydrogenase - genetics</topic><topic>Glucosephosphate Dehydrogenase - metabolism</topic><topic>Humans</topic><topic>Immunoblotting</topic><topic>Infectious Diseases</topic><topic>Metabolic Diseases</topic><topic>Mineralocorticoid Receptor Antagonists - pharmacology</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Oxidizing agents</topic><topic>Proteins</topic><topic>Spironolactone - pharmacology</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leopold, Jane A</creatorcontrib><creatorcontrib>Dam, Aamir</creatorcontrib><creatorcontrib>Maron, Bradley A</creatorcontrib><creatorcontrib>Scribner, Anne W</creatorcontrib><creatorcontrib>Liao, Ronglih</creatorcontrib><creatorcontrib>Handy, Diane E</creatorcontrib><creatorcontrib>Stanton, Robert C</creatorcontrib><creatorcontrib>Pitt, Bertram</creatorcontrib><creatorcontrib>Loscalzo, Joseph</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leopold, Jane A</au><au>Dam, Aamir</au><au>Maron, Bradley A</au><au>Scribner, Anne W</au><au>Liao, Ronglih</au><au>Handy, Diane E</au><au>Stanton, Robert C</au><au>Pitt, Bertram</au><au>Loscalzo, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2007-02-01</date><risdate>2007</risdate><volume>13</volume><issue>2</issue><spage>189</spage><epage>197</epage><pages>189-197</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Hyperaldosteronism is associated with impaired vascular reactivity; however, the mechanisms by which aldosterone promotes endothelial dysfunction remain unknown. Glucose-6-phosphate dehydrogenase (G6PD) modulates vascular function by limiting oxidant stress to preserve bioavailable nitric oxide (NO • ). Here we show that aldosterone (10 −9 –;10 −7 mol/l) decreased endothelial G6PD expression and activity in vitro , resulting in increased oxidant stress and decreased NO • levels—similar to what is observed in G6PD-deficient endothelial cells. Aldosterone decreased G6PD expression by increasing expression of the cyclic AMP−response element modulator (CREM) to inhibit cyclic AMP−response element binding protein (CREB)-mediated G6PD transcription. In vivo , infusion of aldosterone decreased vascular G6PD expression and impaired vascular reactivity. These effects were abrogated by spironolactone or vascular gene transfer of G6pd . These findings demonstrate that aldosterone induces a G6PD-deficient phenotype to impair endothelial function; aldosterone antagonism or gene transfer of G6pd improves vascular reactivity by restoring G6PD activity.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>17273168</pmid><doi>10.1038/nm1545</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-8956
ispartof Nature medicine, 2007-02, Vol.13 (2), p.189-197
issn 1078-8956
1546-170X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3648863
source MEDLINE; Nature; Alma/SFX Local Collection
subjects Aldosterone - pharmacology
Analysis of Variance
Binding sites
Biomedical and Life Sciences
Biomedicine
Blotting, Northern
Cancer Research
Cells, Cultured
Chromatin Immunoprecipitation
Cyclic AMP - metabolism
Cyclic AMP Response Element Modulator - metabolism
Cyclic AMP-Dependent Protein Kinases - metabolism
Dehydrogenase
DNA Primers
Electrophoretic Mobility Shift Assay
Endothelium, Vascular - drug effects
Gene expression
Gene Expression Regulation, Enzymologic - drug effects
Gene Transfer Techniques
Glucose
Glucosephosphate Dehydrogenase - genetics
Glucosephosphate Dehydrogenase - metabolism
Humans
Immunoblotting
Infectious Diseases
Metabolic Diseases
Mineralocorticoid Receptor Antagonists - pharmacology
Molecular Medicine
Neurosciences
Nitric oxide
Nitric Oxide - metabolism
Oxidizing agents
Proteins
Spironolactone - pharmacology
Veins & arteries
title Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aldosterone%20impairs%20vascular%20reactivity%20by%20decreasing%20glucose-6-phosphate%20dehydrogenase%20activity&rft.jtitle=Nature%20medicine&rft.au=Leopold,%20Jane%20A&rft.date=2007-02-01&rft.volume=13&rft.issue=2&rft.spage=189&rft.epage=197&rft.pages=189-197&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/nm1545&rft_dat=%3Cgale_pubme%3EA192447443%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223116147&rft_id=info:pmid/17273168&rft_galeid=A192447443&rfr_iscdi=true