Integrated nanopore sensing platform with sub-microsecond temporal resolution
The temporal resolution of current signals from solid-state nanopores is improved by integrating a complementary metal-oxide-semiconductor preamplifier with the nanopores in thin silicon nitride membranes. Nanopore sensors have attracted considerable interest for high-throughput sensing of individua...
Gespeichert in:
Veröffentlicht in: | Nature methods 2012-05, Vol.9 (5), p.487-492 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 492 |
---|---|
container_issue | 5 |
container_start_page | 487 |
container_title | Nature methods |
container_volume | 9 |
creator | Rosenstein, Jacob K Wanunu, Meni Merchant, Christopher A Drndic, Marija Shepard, Kenneth L |
description | The temporal resolution of current signals from solid-state nanopores is improved by integrating a complementary metal-oxide-semiconductor preamplifier with the nanopores in thin silicon nitride membranes.
Nanopore sensors have attracted considerable interest for high-throughput sensing of individual nucleic acids and proteins without the need for chemical labels or complex optics. A prevailing problem in nanopore applications is that the transport kinetics of single biomolecules are often faster than the measurement time resolution. Methods to slow down biomolecular transport can be troublesome and are at odds with the natural goal of high-throughput sensing. Here we introduce a low-noise measurement platform that integrates a complementary metal-oxide semiconductor (CMOS) preamplifier with solid-state nanopores in thin silicon nitride membranes. With this platform we achieved a signal-to-noise ratio exceeding five at a bandwidth of 1 MHz, which to our knowledge is the highest bandwidth nanopore recording to date. We demonstrate transient signals as brief as 1 μs from short DNA molecules as well as current signatures during molecular passage events that shed light on submolecular DNA configurations in small nanopores. |
doi_str_mv | 10.1038/nmeth.1932 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3648419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A289119920</galeid><sourcerecordid>A289119920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-563a6e4730e2f9b215e17486c0b3c36a91330000d8ad09523ad0b2876f5de7e73</originalsourceid><addsrcrecordid>eNptkUtLxDAQx4Morq5e_ABS8KZ0zaOvXIRFfIHiRc8hbafdSJvUJFX89mZdX4smhwmZ3_yZmT9CBwTPCGbFqe7BL2aEM7qBdkiaFHFOcLr59cacTNCuc08YM5bQdBtNKE1olhR8B93daA-tlR7qSEttBmMhcqCd0m00dNI3xvbRq_KLyI1l3KvKGgeV0XXkoQ-07CILznSjV0bvoa1Gdg72P-MUPV5ePJxfx7f3Vzfn89u4SjH3cZoxmUGSMwy04SUlKZA8KbIKl6ximeSEMRxOXcga85SyEEpa5FmT1pBDzqbobKU7jGUPdQXah0bEYFUv7ZswUon1jFYL0ZoXwcLUSdjUFB19CljzPILz4smMVoeeBcGEE57wLP-hWtmBULoxQazqlavEnBacEM4pDtTsHyrcGsK6jIZGhf-1guNVwXKXzkLz3TjBYumo-HBULB0N8OHvUb_RLwsDcLICXEjpFuzvUf7IvQM2bquG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019194967</pqid></control><display><type>article</type><title>Integrated nanopore sensing platform with sub-microsecond temporal resolution</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Rosenstein, Jacob K ; Wanunu, Meni ; Merchant, Christopher A ; Drndic, Marija ; Shepard, Kenneth L</creator><creatorcontrib>Rosenstein, Jacob K ; Wanunu, Meni ; Merchant, Christopher A ; Drndic, Marija ; Shepard, Kenneth L</creatorcontrib><description>The temporal resolution of current signals from solid-state nanopores is improved by integrating a complementary metal-oxide-semiconductor preamplifier with the nanopores in thin silicon nitride membranes.
Nanopore sensors have attracted considerable interest for high-throughput sensing of individual nucleic acids and proteins without the need for chemical labels or complex optics. A prevailing problem in nanopore applications is that the transport kinetics of single biomolecules are often faster than the measurement time resolution. Methods to slow down biomolecular transport can be troublesome and are at odds with the natural goal of high-throughput sensing. Here we introduce a low-noise measurement platform that integrates a complementary metal-oxide semiconductor (CMOS) preamplifier with solid-state nanopores in thin silicon nitride membranes. With this platform we achieved a signal-to-noise ratio exceeding five at a bandwidth of 1 MHz, which to our knowledge is the highest bandwidth nanopore recording to date. We demonstrate transient signals as brief as 1 μs from short DNA molecules as well as current signatures during molecular passage events that shed light on submolecular DNA configurations in small nanopores.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/nmeth.1932</identifier><identifier>PMID: 22426489</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/350/1058 ; 631/57/2265 ; Amplifiers, Electronic ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; CMOS ; Complementary metal oxide semiconductors ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; High-throughput screening (Biochemical assaying) ; Kinetics ; Life Sciences ; Methods ; Molecular biology ; Nanopores ; Nanotechnology ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Nucleic acids ; Optics ; Properties ; Proteomics ; Sensors ; Signal transduction ; Signal-To-Noise Ratio ; Silicon</subject><ispartof>Nature methods, 2012-05, Vol.9 (5), p.487-492</ispartof><rights>Springer Nature America, Inc. 2012</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 2012</rights><rights>2012 Nature America, Inc., All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-563a6e4730e2f9b215e17486c0b3c36a91330000d8ad09523ad0b2876f5de7e73</citedby><cites>FETCH-LOGICAL-c509t-563a6e4730e2f9b215e17486c0b3c36a91330000d8ad09523ad0b2876f5de7e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22426489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosenstein, Jacob K</creatorcontrib><creatorcontrib>Wanunu, Meni</creatorcontrib><creatorcontrib>Merchant, Christopher A</creatorcontrib><creatorcontrib>Drndic, Marija</creatorcontrib><creatorcontrib>Shepard, Kenneth L</creatorcontrib><title>Integrated nanopore sensing platform with sub-microsecond temporal resolution</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>The temporal resolution of current signals from solid-state nanopores is improved by integrating a complementary metal-oxide-semiconductor preamplifier with the nanopores in thin silicon nitride membranes.
Nanopore sensors have attracted considerable interest for high-throughput sensing of individual nucleic acids and proteins without the need for chemical labels or complex optics. A prevailing problem in nanopore applications is that the transport kinetics of single biomolecules are often faster than the measurement time resolution. Methods to slow down biomolecular transport can be troublesome and are at odds with the natural goal of high-throughput sensing. Here we introduce a low-noise measurement platform that integrates a complementary metal-oxide semiconductor (CMOS) preamplifier with solid-state nanopores in thin silicon nitride membranes. With this platform we achieved a signal-to-noise ratio exceeding five at a bandwidth of 1 MHz, which to our knowledge is the highest bandwidth nanopore recording to date. We demonstrate transient signals as brief as 1 μs from short DNA molecules as well as current signatures during molecular passage events that shed light on submolecular DNA configurations in small nanopores.</description><subject>631/1647/350/1058</subject><subject>631/57/2265</subject><subject>Amplifiers, Electronic</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>CMOS</subject><subject>Complementary metal oxide semiconductors</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>High-throughput screening (Biochemical assaying)</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Molecular biology</subject><subject>Nanopores</subject><subject>Nanotechnology</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Nucleic acids</subject><subject>Optics</subject><subject>Properties</subject><subject>Proteomics</subject><subject>Sensors</subject><subject>Signal transduction</subject><subject>Signal-To-Noise Ratio</subject><subject>Silicon</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkUtLxDAQx4Morq5e_ABS8KZ0zaOvXIRFfIHiRc8hbafdSJvUJFX89mZdX4smhwmZ3_yZmT9CBwTPCGbFqe7BL2aEM7qBdkiaFHFOcLr59cacTNCuc08YM5bQdBtNKE1olhR8B93daA-tlR7qSEttBmMhcqCd0m00dNI3xvbRq_KLyI1l3KvKGgeV0XXkoQ-07CILznSjV0bvoa1Gdg72P-MUPV5ePJxfx7f3Vzfn89u4SjH3cZoxmUGSMwy04SUlKZA8KbIKl6ximeSEMRxOXcga85SyEEpa5FmT1pBDzqbobKU7jGUPdQXah0bEYFUv7ZswUon1jFYL0ZoXwcLUSdjUFB19CljzPILz4smMVoeeBcGEE57wLP-hWtmBULoxQazqlavEnBacEM4pDtTsHyrcGsK6jIZGhf-1guNVwXKXzkLz3TjBYumo-HBULB0N8OHvUb_RLwsDcLICXEjpFuzvUf7IvQM2bquG</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Rosenstein, Jacob K</creator><creator>Wanunu, Meni</creator><creator>Merchant, Christopher A</creator><creator>Drndic, Marija</creator><creator>Shepard, Kenneth L</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20120501</creationdate><title>Integrated nanopore sensing platform with sub-microsecond temporal resolution</title><author>Rosenstein, Jacob K ; Wanunu, Meni ; Merchant, Christopher A ; Drndic, Marija ; Shepard, Kenneth L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-563a6e4730e2f9b215e17486c0b3c36a91330000d8ad09523ad0b2876f5de7e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/1647/350/1058</topic><topic>631/57/2265</topic><topic>Amplifiers, Electronic</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>CMOS</topic><topic>Complementary metal oxide semiconductors</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>High-throughput screening (Biochemical assaying)</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Molecular biology</topic><topic>Nanopores</topic><topic>Nanotechnology</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Nucleic acids</topic><topic>Optics</topic><topic>Properties</topic><topic>Proteomics</topic><topic>Sensors</topic><topic>Signal transduction</topic><topic>Signal-To-Noise Ratio</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenstein, Jacob K</creatorcontrib><creatorcontrib>Wanunu, Meni</creatorcontrib><creatorcontrib>Merchant, Christopher A</creatorcontrib><creatorcontrib>Drndic, Marija</creatorcontrib><creatorcontrib>Shepard, Kenneth L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenstein, Jacob K</au><au>Wanunu, Meni</au><au>Merchant, Christopher A</au><au>Drndic, Marija</au><au>Shepard, Kenneth L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated nanopore sensing platform with sub-microsecond temporal resolution</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>9</volume><issue>5</issue><spage>487</spage><epage>492</epage><pages>487-492</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>The temporal resolution of current signals from solid-state nanopores is improved by integrating a complementary metal-oxide-semiconductor preamplifier with the nanopores in thin silicon nitride membranes.
Nanopore sensors have attracted considerable interest for high-throughput sensing of individual nucleic acids and proteins without the need for chemical labels or complex optics. A prevailing problem in nanopore applications is that the transport kinetics of single biomolecules are often faster than the measurement time resolution. Methods to slow down biomolecular transport can be troublesome and are at odds with the natural goal of high-throughput sensing. Here we introduce a low-noise measurement platform that integrates a complementary metal-oxide semiconductor (CMOS) preamplifier with solid-state nanopores in thin silicon nitride membranes. With this platform we achieved a signal-to-noise ratio exceeding five at a bandwidth of 1 MHz, which to our knowledge is the highest bandwidth nanopore recording to date. We demonstrate transient signals as brief as 1 μs from short DNA molecules as well as current signatures during molecular passage events that shed light on submolecular DNA configurations in small nanopores.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>22426489</pmid><doi>10.1038/nmeth.1932</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2012-05, Vol.9 (5), p.487-492 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3648419 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 631/1647/350/1058 631/57/2265 Amplifiers, Electronic Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology CMOS Complementary metal oxide semiconductors Deoxyribonucleic acid DNA DNA - chemistry High-throughput screening (Biochemical assaying) Kinetics Life Sciences Methods Molecular biology Nanopores Nanotechnology Nanotechnology - instrumentation Nanotechnology - methods Nucleic acids Optics Properties Proteomics Sensors Signal transduction Signal-To-Noise Ratio Silicon |
title | Integrated nanopore sensing platform with sub-microsecond temporal resolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20nanopore%20sensing%20platform%20with%20sub-microsecond%20temporal%20resolution&rft.jtitle=Nature%20methods&rft.au=Rosenstein,%20Jacob%20K&rft.date=2012-05-01&rft.volume=9&rft.issue=5&rft.spage=487&rft.epage=492&rft.pages=487-492&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/nmeth.1932&rft_dat=%3Cgale_pubme%3EA289119920%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019194967&rft_id=info:pmid/22426489&rft_galeid=A289119920&rfr_iscdi=true |