Resting state alpha-band functional connectivity and recovery after stroke

After cerebral ischemia, disruption and subsequent reorganization of functional connections occur both locally and remote to the lesion. However, the unpredictable timing and extent of sensorimotor recovery reflects a gap in understanding of these underlying neural mechanisms. We aimed to identify t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental neurology 2012-09, Vol.237 (1), p.160-169
Hauptverfasser: Westlake, Kelly P., Hinkley, Leighton B., Bucci, Monica, Guggisberg, Adrian G., Findlay, Anne M., Henry, Roland G., Nagarajan, Srikantan S., Byl, Nancy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 169
container_issue 1
container_start_page 160
container_title Experimental neurology
container_volume 237
creator Westlake, Kelly P.
Hinkley, Leighton B.
Bucci, Monica
Guggisberg, Adrian G.
Findlay, Anne M.
Henry, Roland G.
Nagarajan, Srikantan S.
Byl, Nancy
description After cerebral ischemia, disruption and subsequent reorganization of functional connections occur both locally and remote to the lesion. However, the unpredictable timing and extent of sensorimotor recovery reflects a gap in understanding of these underlying neural mechanisms. We aimed to identify the plasticity of alpha-band functional neural connections within the perilesional area and the predictive value of functional connectivity with respect to motor recovery of the upper extremity after stroke. Our results show improvements in upper extremity motor recovery in relation to distributed changes in MEG-based alpha band functional connectivity, both in the perilesional area and contralesional cortex. Motor recovery was found to be predicted by increased connectivity at baseline in the ipsilesional somatosensory area, supplementary motor area, and cerebellum, contrasted with reduced connectivity of contralesional motor regions, after controlling for age, stroke onset-time and lesion size. These findings support plasticity within a widely distributed neural network and define brain regions in which the extent of network participation predicts post-stroke recovery potential. ► We used MEG to examine connectivity in resting cortical oscillations after stroke. ► Arm recovery is related to plasticity in perilesional and contralesional connectivity. ► Connectivity in somatosensory cortex, SMA, and cerebellum predicted recovery. ► Stroke affects distributed neural networks in alpha band imaginary coherence.
doi_str_mv 10.1016/j.expneurol.2012.06.020
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3646713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014488612002622</els_id><sourcerecordid>1033453130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-1e16d9969edce65346455072e10cd5ec9670bf2efda8bd0472de5b9062bc8dd93</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhL0AuSFwSxh-xkwtSVRUKqoSE4Gw59qT1krUXO1m1_x6vdlngBCdrNM-8mvFDyCsKDQUq364bvN8GXFKcGgaUNSAbYPCIrCj0UDPB4TFZAVBRi66TZ-RZzmsA6AVTT8kZY6oFzsSKfPqCefbhtsqzmbEy0_bO1IMJrhqXYGcfg5kqG0PAUuz8_FDtewlt3GEqxThjKrMpfsfn5Mlopowvju85-fb-6uvldX3z-cPHy4ub2koQc02RStf3skdnUbZcSNG2oBhSsK5F20sFw8hwdKYbHAjFHLZDD5INtnOu5-fk3SF3uwybfUiYk5n0NvmNSQ86Gq__7gR_p2_jTnMppKK8BLw5BqT4Yyn3643PFqfJBIxL1hR4J6ETXf8_KBctpxwKqg6oTTHnhONpIwp6L02v9Uma3kvTIHWRViZf_nnQae6XpQK8PgImWzONyQTr829OctqpThXu4sBh-f6dx6Sz9RgsOl-MzdpF_89lfgLgqrvE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033453130</pqid></control><display><type>article</type><title>Resting state alpha-band functional connectivity and recovery after stroke</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Westlake, Kelly P. ; Hinkley, Leighton B. ; Bucci, Monica ; Guggisberg, Adrian G. ; Findlay, Anne M. ; Henry, Roland G. ; Nagarajan, Srikantan S. ; Byl, Nancy</creator><creatorcontrib>Westlake, Kelly P. ; Hinkley, Leighton B. ; Bucci, Monica ; Guggisberg, Adrian G. ; Findlay, Anne M. ; Henry, Roland G. ; Nagarajan, Srikantan S. ; Byl, Nancy</creatorcontrib><description>After cerebral ischemia, disruption and subsequent reorganization of functional connections occur both locally and remote to the lesion. However, the unpredictable timing and extent of sensorimotor recovery reflects a gap in understanding of these underlying neural mechanisms. We aimed to identify the plasticity of alpha-band functional neural connections within the perilesional area and the predictive value of functional connectivity with respect to motor recovery of the upper extremity after stroke. Our results show improvements in upper extremity motor recovery in relation to distributed changes in MEG-based alpha band functional connectivity, both in the perilesional area and contralesional cortex. Motor recovery was found to be predicted by increased connectivity at baseline in the ipsilesional somatosensory area, supplementary motor area, and cerebellum, contrasted with reduced connectivity of contralesional motor regions, after controlling for age, stroke onset-time and lesion size. These findings support plasticity within a widely distributed neural network and define brain regions in which the extent of network participation predicts post-stroke recovery potential. ► We used MEG to examine connectivity in resting cortical oscillations after stroke. ► Arm recovery is related to plasticity in perilesional and contralesional connectivity. ► Connectivity in somatosensory cortex, SMA, and cerebellum predicted recovery. ► Stroke affects distributed neural networks in alpha band imaginary coherence.</description><identifier>ISSN: 0014-4886</identifier><identifier>EISSN: 1090-2430</identifier><identifier>DOI: 10.1016/j.expneurol.2012.06.020</identifier><identifier>PMID: 22750324</identifier><identifier>CODEN: EXNEAC</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Adult ; Age ; Aged ; Alpha Rhythm - physiology ; Biological and medical sciences ; Brain ; Brain connectivity ; Cerebellum ; Cortex ; Cortex (motor) ; Cortex (somatosensory) ; Female ; Hand - physiology ; Humans ; Ischemia ; Magnetoencephalography ; Magnetoencephalography - methods ; Male ; Medical sciences ; Middle Aged ; Motor Cortex - pathology ; Motor Cortex - physiology ; Motor recovery ; Neural networks ; Neurology ; Plasticity ; Plasticity (functional) ; Plasticity (neural) ; Predictive Value of Tests ; Recovery of function ; Recovery of Function - physiology ; Resting Phase, Cell Cycle - physiology ; sensorimotor system ; Spinal Cord - pathology ; Spinal Cord - physiology ; Stroke ; Stroke - pathology ; Stroke - physiopathology ; supplementary motor area ; Vascular diseases and vascular malformations of the nervous system</subject><ispartof>Experimental neurology, 2012-09, Vol.237 (1), p.160-169</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-1e16d9969edce65346455072e10cd5ec9670bf2efda8bd0472de5b9062bc8dd93</citedby><cites>FETCH-LOGICAL-c604t-1e16d9969edce65346455072e10cd5ec9670bf2efda8bd0472de5b9062bc8dd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014488612002622$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26318787$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22750324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Westlake, Kelly P.</creatorcontrib><creatorcontrib>Hinkley, Leighton B.</creatorcontrib><creatorcontrib>Bucci, Monica</creatorcontrib><creatorcontrib>Guggisberg, Adrian G.</creatorcontrib><creatorcontrib>Findlay, Anne M.</creatorcontrib><creatorcontrib>Henry, Roland G.</creatorcontrib><creatorcontrib>Nagarajan, Srikantan S.</creatorcontrib><creatorcontrib>Byl, Nancy</creatorcontrib><title>Resting state alpha-band functional connectivity and recovery after stroke</title><title>Experimental neurology</title><addtitle>Exp Neurol</addtitle><description>After cerebral ischemia, disruption and subsequent reorganization of functional connections occur both locally and remote to the lesion. However, the unpredictable timing and extent of sensorimotor recovery reflects a gap in understanding of these underlying neural mechanisms. We aimed to identify the plasticity of alpha-band functional neural connections within the perilesional area and the predictive value of functional connectivity with respect to motor recovery of the upper extremity after stroke. Our results show improvements in upper extremity motor recovery in relation to distributed changes in MEG-based alpha band functional connectivity, both in the perilesional area and contralesional cortex. Motor recovery was found to be predicted by increased connectivity at baseline in the ipsilesional somatosensory area, supplementary motor area, and cerebellum, contrasted with reduced connectivity of contralesional motor regions, after controlling for age, stroke onset-time and lesion size. These findings support plasticity within a widely distributed neural network and define brain regions in which the extent of network participation predicts post-stroke recovery potential. ► We used MEG to examine connectivity in resting cortical oscillations after stroke. ► Arm recovery is related to plasticity in perilesional and contralesional connectivity. ► Connectivity in somatosensory cortex, SMA, and cerebellum predicted recovery. ► Stroke affects distributed neural networks in alpha band imaginary coherence.</description><subject>Adult</subject><subject>Age</subject><subject>Aged</subject><subject>Alpha Rhythm - physiology</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain connectivity</subject><subject>Cerebellum</subject><subject>Cortex</subject><subject>Cortex (motor)</subject><subject>Cortex (somatosensory)</subject><subject>Female</subject><subject>Hand - physiology</subject><subject>Humans</subject><subject>Ischemia</subject><subject>Magnetoencephalography</subject><subject>Magnetoencephalography - methods</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Motor Cortex - pathology</subject><subject>Motor Cortex - physiology</subject><subject>Motor recovery</subject><subject>Neural networks</subject><subject>Neurology</subject><subject>Plasticity</subject><subject>Plasticity (functional)</subject><subject>Plasticity (neural)</subject><subject>Predictive Value of Tests</subject><subject>Recovery of function</subject><subject>Recovery of Function - physiology</subject><subject>Resting Phase, Cell Cycle - physiology</subject><subject>sensorimotor system</subject><subject>Spinal Cord - pathology</subject><subject>Spinal Cord - physiology</subject><subject>Stroke</subject><subject>Stroke - pathology</subject><subject>Stroke - physiopathology</subject><subject>supplementary motor area</subject><subject>Vascular diseases and vascular malformations of the nervous system</subject><issn>0014-4886</issn><issn>1090-2430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EokvhL0AuSFwSxh-xkwtSVRUKqoSE4Gw59qT1krUXO1m1_x6vdlngBCdrNM-8mvFDyCsKDQUq364bvN8GXFKcGgaUNSAbYPCIrCj0UDPB4TFZAVBRi66TZ-RZzmsA6AVTT8kZY6oFzsSKfPqCefbhtsqzmbEy0_bO1IMJrhqXYGcfg5kqG0PAUuz8_FDtewlt3GEqxThjKrMpfsfn5Mlopowvju85-fb-6uvldX3z-cPHy4ub2koQc02RStf3skdnUbZcSNG2oBhSsK5F20sFw8hwdKYbHAjFHLZDD5INtnOu5-fk3SF3uwybfUiYk5n0NvmNSQ86Gq__7gR_p2_jTnMppKK8BLw5BqT4Yyn3643PFqfJBIxL1hR4J6ETXf8_KBctpxwKqg6oTTHnhONpIwp6L02v9Uma3kvTIHWRViZf_nnQae6XpQK8PgImWzONyQTr829OctqpThXu4sBh-f6dx6Sz9RgsOl-MzdpF_89lfgLgqrvE</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Westlake, Kelly P.</creator><creator>Hinkley, Leighton B.</creator><creator>Bucci, Monica</creator><creator>Guggisberg, Adrian G.</creator><creator>Findlay, Anne M.</creator><creator>Henry, Roland G.</creator><creator>Nagarajan, Srikantan S.</creator><creator>Byl, Nancy</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20120901</creationdate><title>Resting state alpha-band functional connectivity and recovery after stroke</title><author>Westlake, Kelly P. ; Hinkley, Leighton B. ; Bucci, Monica ; Guggisberg, Adrian G. ; Findlay, Anne M. ; Henry, Roland G. ; Nagarajan, Srikantan S. ; Byl, Nancy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-1e16d9969edce65346455072e10cd5ec9670bf2efda8bd0472de5b9062bc8dd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Age</topic><topic>Aged</topic><topic>Alpha Rhythm - physiology</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain connectivity</topic><topic>Cerebellum</topic><topic>Cortex</topic><topic>Cortex (motor)</topic><topic>Cortex (somatosensory)</topic><topic>Female</topic><topic>Hand - physiology</topic><topic>Humans</topic><topic>Ischemia</topic><topic>Magnetoencephalography</topic><topic>Magnetoencephalography - methods</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Motor Cortex - pathology</topic><topic>Motor Cortex - physiology</topic><topic>Motor recovery</topic><topic>Neural networks</topic><topic>Neurology</topic><topic>Plasticity</topic><topic>Plasticity (functional)</topic><topic>Plasticity (neural)</topic><topic>Predictive Value of Tests</topic><topic>Recovery of function</topic><topic>Recovery of Function - physiology</topic><topic>Resting Phase, Cell Cycle - physiology</topic><topic>sensorimotor system</topic><topic>Spinal Cord - pathology</topic><topic>Spinal Cord - physiology</topic><topic>Stroke</topic><topic>Stroke - pathology</topic><topic>Stroke - physiopathology</topic><topic>supplementary motor area</topic><topic>Vascular diseases and vascular malformations of the nervous system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westlake, Kelly P.</creatorcontrib><creatorcontrib>Hinkley, Leighton B.</creatorcontrib><creatorcontrib>Bucci, Monica</creatorcontrib><creatorcontrib>Guggisberg, Adrian G.</creatorcontrib><creatorcontrib>Findlay, Anne M.</creatorcontrib><creatorcontrib>Henry, Roland G.</creatorcontrib><creatorcontrib>Nagarajan, Srikantan S.</creatorcontrib><creatorcontrib>Byl, Nancy</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westlake, Kelly P.</au><au>Hinkley, Leighton B.</au><au>Bucci, Monica</au><au>Guggisberg, Adrian G.</au><au>Findlay, Anne M.</au><au>Henry, Roland G.</au><au>Nagarajan, Srikantan S.</au><au>Byl, Nancy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resting state alpha-band functional connectivity and recovery after stroke</atitle><jtitle>Experimental neurology</jtitle><addtitle>Exp Neurol</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>237</volume><issue>1</issue><spage>160</spage><epage>169</epage><pages>160-169</pages><issn>0014-4886</issn><eissn>1090-2430</eissn><coden>EXNEAC</coden><abstract>After cerebral ischemia, disruption and subsequent reorganization of functional connections occur both locally and remote to the lesion. However, the unpredictable timing and extent of sensorimotor recovery reflects a gap in understanding of these underlying neural mechanisms. We aimed to identify the plasticity of alpha-band functional neural connections within the perilesional area and the predictive value of functional connectivity with respect to motor recovery of the upper extremity after stroke. Our results show improvements in upper extremity motor recovery in relation to distributed changes in MEG-based alpha band functional connectivity, both in the perilesional area and contralesional cortex. Motor recovery was found to be predicted by increased connectivity at baseline in the ipsilesional somatosensory area, supplementary motor area, and cerebellum, contrasted with reduced connectivity of contralesional motor regions, after controlling for age, stroke onset-time and lesion size. These findings support plasticity within a widely distributed neural network and define brain regions in which the extent of network participation predicts post-stroke recovery potential. ► We used MEG to examine connectivity in resting cortical oscillations after stroke. ► Arm recovery is related to plasticity in perilesional and contralesional connectivity. ► Connectivity in somatosensory cortex, SMA, and cerebellum predicted recovery. ► Stroke affects distributed neural networks in alpha band imaginary coherence.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>22750324</pmid><doi>10.1016/j.expneurol.2012.06.020</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4886
ispartof Experimental neurology, 2012-09, Vol.237 (1), p.160-169
issn 0014-4886
1090-2430
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3646713
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Age
Aged
Alpha Rhythm - physiology
Biological and medical sciences
Brain
Brain connectivity
Cerebellum
Cortex
Cortex (motor)
Cortex (somatosensory)
Female
Hand - physiology
Humans
Ischemia
Magnetoencephalography
Magnetoencephalography - methods
Male
Medical sciences
Middle Aged
Motor Cortex - pathology
Motor Cortex - physiology
Motor recovery
Neural networks
Neurology
Plasticity
Plasticity (functional)
Plasticity (neural)
Predictive Value of Tests
Recovery of function
Recovery of Function - physiology
Resting Phase, Cell Cycle - physiology
sensorimotor system
Spinal Cord - pathology
Spinal Cord - physiology
Stroke
Stroke - pathology
Stroke - physiopathology
supplementary motor area
Vascular diseases and vascular malformations of the nervous system
title Resting state alpha-band functional connectivity and recovery after stroke
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resting%20state%20alpha-band%20functional%20connectivity%20and%20recovery%20after%20stroke&rft.jtitle=Experimental%20neurology&rft.au=Westlake,%20Kelly%20P.&rft.date=2012-09-01&rft.volume=237&rft.issue=1&rft.spage=160&rft.epage=169&rft.pages=160-169&rft.issn=0014-4886&rft.eissn=1090-2430&rft.coden=EXNEAC&rft_id=info:doi/10.1016/j.expneurol.2012.06.020&rft_dat=%3Cproquest_pubme%3E1033453130%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033453130&rft_id=info:pmid/22750324&rft_els_id=S0014488612002622&rfr_iscdi=true