Resting state alpha-band functional connectivity and recovery after stroke
After cerebral ischemia, disruption and subsequent reorganization of functional connections occur both locally and remote to the lesion. However, the unpredictable timing and extent of sensorimotor recovery reflects a gap in understanding of these underlying neural mechanisms. We aimed to identify t...
Gespeichert in:
Veröffentlicht in: | Experimental neurology 2012-09, Vol.237 (1), p.160-169 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 169 |
---|---|
container_issue | 1 |
container_start_page | 160 |
container_title | Experimental neurology |
container_volume | 237 |
creator | Westlake, Kelly P. Hinkley, Leighton B. Bucci, Monica Guggisberg, Adrian G. Findlay, Anne M. Henry, Roland G. Nagarajan, Srikantan S. Byl, Nancy |
description | After cerebral ischemia, disruption and subsequent reorganization of functional connections occur both locally and remote to the lesion. However, the unpredictable timing and extent of sensorimotor recovery reflects a gap in understanding of these underlying neural mechanisms. We aimed to identify the plasticity of alpha-band functional neural connections within the perilesional area and the predictive value of functional connectivity with respect to motor recovery of the upper extremity after stroke. Our results show improvements in upper extremity motor recovery in relation to distributed changes in MEG-based alpha band functional connectivity, both in the perilesional area and contralesional cortex. Motor recovery was found to be predicted by increased connectivity at baseline in the ipsilesional somatosensory area, supplementary motor area, and cerebellum, contrasted with reduced connectivity of contralesional motor regions, after controlling for age, stroke onset-time and lesion size. These findings support plasticity within a widely distributed neural network and define brain regions in which the extent of network participation predicts post-stroke recovery potential.
► We used MEG to examine connectivity in resting cortical oscillations after stroke. ► Arm recovery is related to plasticity in perilesional and contralesional connectivity. ► Connectivity in somatosensory cortex, SMA, and cerebellum predicted recovery. ► Stroke affects distributed neural networks in alpha band imaginary coherence. |
doi_str_mv | 10.1016/j.expneurol.2012.06.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3646713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014488612002622</els_id><sourcerecordid>1033453130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-1e16d9969edce65346455072e10cd5ec9670bf2efda8bd0472de5b9062bc8dd93</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhL0AuSFwSxh-xkwtSVRUKqoSE4Gw59qT1krUXO1m1_x6vdlngBCdrNM-8mvFDyCsKDQUq364bvN8GXFKcGgaUNSAbYPCIrCj0UDPB4TFZAVBRi66TZ-RZzmsA6AVTT8kZY6oFzsSKfPqCefbhtsqzmbEy0_bO1IMJrhqXYGcfg5kqG0PAUuz8_FDtewlt3GEqxThjKrMpfsfn5Mlopowvju85-fb-6uvldX3z-cPHy4ub2koQc02RStf3skdnUbZcSNG2oBhSsK5F20sFw8hwdKYbHAjFHLZDD5INtnOu5-fk3SF3uwybfUiYk5n0NvmNSQ86Gq__7gR_p2_jTnMppKK8BLw5BqT4Yyn3643PFqfJBIxL1hR4J6ETXf8_KBctpxwKqg6oTTHnhONpIwp6L02v9Uma3kvTIHWRViZf_nnQae6XpQK8PgImWzONyQTr829OctqpThXu4sBh-f6dx6Sz9RgsOl-MzdpF_89lfgLgqrvE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033453130</pqid></control><display><type>article</type><title>Resting state alpha-band functional connectivity and recovery after stroke</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Westlake, Kelly P. ; Hinkley, Leighton B. ; Bucci, Monica ; Guggisberg, Adrian G. ; Findlay, Anne M. ; Henry, Roland G. ; Nagarajan, Srikantan S. ; Byl, Nancy</creator><creatorcontrib>Westlake, Kelly P. ; Hinkley, Leighton B. ; Bucci, Monica ; Guggisberg, Adrian G. ; Findlay, Anne M. ; Henry, Roland G. ; Nagarajan, Srikantan S. ; Byl, Nancy</creatorcontrib><description>After cerebral ischemia, disruption and subsequent reorganization of functional connections occur both locally and remote to the lesion. However, the unpredictable timing and extent of sensorimotor recovery reflects a gap in understanding of these underlying neural mechanisms. We aimed to identify the plasticity of alpha-band functional neural connections within the perilesional area and the predictive value of functional connectivity with respect to motor recovery of the upper extremity after stroke. Our results show improvements in upper extremity motor recovery in relation to distributed changes in MEG-based alpha band functional connectivity, both in the perilesional area and contralesional cortex. Motor recovery was found to be predicted by increased connectivity at baseline in the ipsilesional somatosensory area, supplementary motor area, and cerebellum, contrasted with reduced connectivity of contralesional motor regions, after controlling for age, stroke onset-time and lesion size. These findings support plasticity within a widely distributed neural network and define brain regions in which the extent of network participation predicts post-stroke recovery potential.
► We used MEG to examine connectivity in resting cortical oscillations after stroke. ► Arm recovery is related to plasticity in perilesional and contralesional connectivity. ► Connectivity in somatosensory cortex, SMA, and cerebellum predicted recovery. ► Stroke affects distributed neural networks in alpha band imaginary coherence.</description><identifier>ISSN: 0014-4886</identifier><identifier>EISSN: 1090-2430</identifier><identifier>DOI: 10.1016/j.expneurol.2012.06.020</identifier><identifier>PMID: 22750324</identifier><identifier>CODEN: EXNEAC</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Adult ; Age ; Aged ; Alpha Rhythm - physiology ; Biological and medical sciences ; Brain ; Brain connectivity ; Cerebellum ; Cortex ; Cortex (motor) ; Cortex (somatosensory) ; Female ; Hand - physiology ; Humans ; Ischemia ; Magnetoencephalography ; Magnetoencephalography - methods ; Male ; Medical sciences ; Middle Aged ; Motor Cortex - pathology ; Motor Cortex - physiology ; Motor recovery ; Neural networks ; Neurology ; Plasticity ; Plasticity (functional) ; Plasticity (neural) ; Predictive Value of Tests ; Recovery of function ; Recovery of Function - physiology ; Resting Phase, Cell Cycle - physiology ; sensorimotor system ; Spinal Cord - pathology ; Spinal Cord - physiology ; Stroke ; Stroke - pathology ; Stroke - physiopathology ; supplementary motor area ; Vascular diseases and vascular malformations of the nervous system</subject><ispartof>Experimental neurology, 2012-09, Vol.237 (1), p.160-169</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-1e16d9969edce65346455072e10cd5ec9670bf2efda8bd0472de5b9062bc8dd93</citedby><cites>FETCH-LOGICAL-c604t-1e16d9969edce65346455072e10cd5ec9670bf2efda8bd0472de5b9062bc8dd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014488612002622$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26318787$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22750324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Westlake, Kelly P.</creatorcontrib><creatorcontrib>Hinkley, Leighton B.</creatorcontrib><creatorcontrib>Bucci, Monica</creatorcontrib><creatorcontrib>Guggisberg, Adrian G.</creatorcontrib><creatorcontrib>Findlay, Anne M.</creatorcontrib><creatorcontrib>Henry, Roland G.</creatorcontrib><creatorcontrib>Nagarajan, Srikantan S.</creatorcontrib><creatorcontrib>Byl, Nancy</creatorcontrib><title>Resting state alpha-band functional connectivity and recovery after stroke</title><title>Experimental neurology</title><addtitle>Exp Neurol</addtitle><description>After cerebral ischemia, disruption and subsequent reorganization of functional connections occur both locally and remote to the lesion. However, the unpredictable timing and extent of sensorimotor recovery reflects a gap in understanding of these underlying neural mechanisms. We aimed to identify the plasticity of alpha-band functional neural connections within the perilesional area and the predictive value of functional connectivity with respect to motor recovery of the upper extremity after stroke. Our results show improvements in upper extremity motor recovery in relation to distributed changes in MEG-based alpha band functional connectivity, both in the perilesional area and contralesional cortex. Motor recovery was found to be predicted by increased connectivity at baseline in the ipsilesional somatosensory area, supplementary motor area, and cerebellum, contrasted with reduced connectivity of contralesional motor regions, after controlling for age, stroke onset-time and lesion size. These findings support plasticity within a widely distributed neural network and define brain regions in which the extent of network participation predicts post-stroke recovery potential.
► We used MEG to examine connectivity in resting cortical oscillations after stroke. ► Arm recovery is related to plasticity in perilesional and contralesional connectivity. ► Connectivity in somatosensory cortex, SMA, and cerebellum predicted recovery. ► Stroke affects distributed neural networks in alpha band imaginary coherence.</description><subject>Adult</subject><subject>Age</subject><subject>Aged</subject><subject>Alpha Rhythm - physiology</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain connectivity</subject><subject>Cerebellum</subject><subject>Cortex</subject><subject>Cortex (motor)</subject><subject>Cortex (somatosensory)</subject><subject>Female</subject><subject>Hand - physiology</subject><subject>Humans</subject><subject>Ischemia</subject><subject>Magnetoencephalography</subject><subject>Magnetoencephalography - methods</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Motor Cortex - pathology</subject><subject>Motor Cortex - physiology</subject><subject>Motor recovery</subject><subject>Neural networks</subject><subject>Neurology</subject><subject>Plasticity</subject><subject>Plasticity (functional)</subject><subject>Plasticity (neural)</subject><subject>Predictive Value of Tests</subject><subject>Recovery of function</subject><subject>Recovery of Function - physiology</subject><subject>Resting Phase, Cell Cycle - physiology</subject><subject>sensorimotor system</subject><subject>Spinal Cord - pathology</subject><subject>Spinal Cord - physiology</subject><subject>Stroke</subject><subject>Stroke - pathology</subject><subject>Stroke - physiopathology</subject><subject>supplementary motor area</subject><subject>Vascular diseases and vascular malformations of the nervous system</subject><issn>0014-4886</issn><issn>1090-2430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EokvhL0AuSFwSxh-xkwtSVRUKqoSE4Gw59qT1krUXO1m1_x6vdlngBCdrNM-8mvFDyCsKDQUq364bvN8GXFKcGgaUNSAbYPCIrCj0UDPB4TFZAVBRi66TZ-RZzmsA6AVTT8kZY6oFzsSKfPqCefbhtsqzmbEy0_bO1IMJrhqXYGcfg5kqG0PAUuz8_FDtewlt3GEqxThjKrMpfsfn5Mlopowvju85-fb-6uvldX3z-cPHy4ub2koQc02RStf3skdnUbZcSNG2oBhSsK5F20sFw8hwdKYbHAjFHLZDD5INtnOu5-fk3SF3uwybfUiYk5n0NvmNSQ86Gq__7gR_p2_jTnMppKK8BLw5BqT4Yyn3643PFqfJBIxL1hR4J6ETXf8_KBctpxwKqg6oTTHnhONpIwp6L02v9Uma3kvTIHWRViZf_nnQae6XpQK8PgImWzONyQTr829OctqpThXu4sBh-f6dx6Sz9RgsOl-MzdpF_89lfgLgqrvE</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Westlake, Kelly P.</creator><creator>Hinkley, Leighton B.</creator><creator>Bucci, Monica</creator><creator>Guggisberg, Adrian G.</creator><creator>Findlay, Anne M.</creator><creator>Henry, Roland G.</creator><creator>Nagarajan, Srikantan S.</creator><creator>Byl, Nancy</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20120901</creationdate><title>Resting state alpha-band functional connectivity and recovery after stroke</title><author>Westlake, Kelly P. ; Hinkley, Leighton B. ; Bucci, Monica ; Guggisberg, Adrian G. ; Findlay, Anne M. ; Henry, Roland G. ; Nagarajan, Srikantan S. ; Byl, Nancy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-1e16d9969edce65346455072e10cd5ec9670bf2efda8bd0472de5b9062bc8dd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Age</topic><topic>Aged</topic><topic>Alpha Rhythm - physiology</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain connectivity</topic><topic>Cerebellum</topic><topic>Cortex</topic><topic>Cortex (motor)</topic><topic>Cortex (somatosensory)</topic><topic>Female</topic><topic>Hand - physiology</topic><topic>Humans</topic><topic>Ischemia</topic><topic>Magnetoencephalography</topic><topic>Magnetoencephalography - methods</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Motor Cortex - pathology</topic><topic>Motor Cortex - physiology</topic><topic>Motor recovery</topic><topic>Neural networks</topic><topic>Neurology</topic><topic>Plasticity</topic><topic>Plasticity (functional)</topic><topic>Plasticity (neural)</topic><topic>Predictive Value of Tests</topic><topic>Recovery of function</topic><topic>Recovery of Function - physiology</topic><topic>Resting Phase, Cell Cycle - physiology</topic><topic>sensorimotor system</topic><topic>Spinal Cord - pathology</topic><topic>Spinal Cord - physiology</topic><topic>Stroke</topic><topic>Stroke - pathology</topic><topic>Stroke - physiopathology</topic><topic>supplementary motor area</topic><topic>Vascular diseases and vascular malformations of the nervous system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westlake, Kelly P.</creatorcontrib><creatorcontrib>Hinkley, Leighton B.</creatorcontrib><creatorcontrib>Bucci, Monica</creatorcontrib><creatorcontrib>Guggisberg, Adrian G.</creatorcontrib><creatorcontrib>Findlay, Anne M.</creatorcontrib><creatorcontrib>Henry, Roland G.</creatorcontrib><creatorcontrib>Nagarajan, Srikantan S.</creatorcontrib><creatorcontrib>Byl, Nancy</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westlake, Kelly P.</au><au>Hinkley, Leighton B.</au><au>Bucci, Monica</au><au>Guggisberg, Adrian G.</au><au>Findlay, Anne M.</au><au>Henry, Roland G.</au><au>Nagarajan, Srikantan S.</au><au>Byl, Nancy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resting state alpha-band functional connectivity and recovery after stroke</atitle><jtitle>Experimental neurology</jtitle><addtitle>Exp Neurol</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>237</volume><issue>1</issue><spage>160</spage><epage>169</epage><pages>160-169</pages><issn>0014-4886</issn><eissn>1090-2430</eissn><coden>EXNEAC</coden><abstract>After cerebral ischemia, disruption and subsequent reorganization of functional connections occur both locally and remote to the lesion. However, the unpredictable timing and extent of sensorimotor recovery reflects a gap in understanding of these underlying neural mechanisms. We aimed to identify the plasticity of alpha-band functional neural connections within the perilesional area and the predictive value of functional connectivity with respect to motor recovery of the upper extremity after stroke. Our results show improvements in upper extremity motor recovery in relation to distributed changes in MEG-based alpha band functional connectivity, both in the perilesional area and contralesional cortex. Motor recovery was found to be predicted by increased connectivity at baseline in the ipsilesional somatosensory area, supplementary motor area, and cerebellum, contrasted with reduced connectivity of contralesional motor regions, after controlling for age, stroke onset-time and lesion size. These findings support plasticity within a widely distributed neural network and define brain regions in which the extent of network participation predicts post-stroke recovery potential.
► We used MEG to examine connectivity in resting cortical oscillations after stroke. ► Arm recovery is related to plasticity in perilesional and contralesional connectivity. ► Connectivity in somatosensory cortex, SMA, and cerebellum predicted recovery. ► Stroke affects distributed neural networks in alpha band imaginary coherence.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>22750324</pmid><doi>10.1016/j.expneurol.2012.06.020</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4886 |
ispartof | Experimental neurology, 2012-09, Vol.237 (1), p.160-169 |
issn | 0014-4886 1090-2430 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3646713 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adult Age Aged Alpha Rhythm - physiology Biological and medical sciences Brain Brain connectivity Cerebellum Cortex Cortex (motor) Cortex (somatosensory) Female Hand - physiology Humans Ischemia Magnetoencephalography Magnetoencephalography - methods Male Medical sciences Middle Aged Motor Cortex - pathology Motor Cortex - physiology Motor recovery Neural networks Neurology Plasticity Plasticity (functional) Plasticity (neural) Predictive Value of Tests Recovery of function Recovery of Function - physiology Resting Phase, Cell Cycle - physiology sensorimotor system Spinal Cord - pathology Spinal Cord - physiology Stroke Stroke - pathology Stroke - physiopathology supplementary motor area Vascular diseases and vascular malformations of the nervous system |
title | Resting state alpha-band functional connectivity and recovery after stroke |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resting%20state%20alpha-band%20functional%20connectivity%20and%20recovery%20after%20stroke&rft.jtitle=Experimental%20neurology&rft.au=Westlake,%20Kelly%20P.&rft.date=2012-09-01&rft.volume=237&rft.issue=1&rft.spage=160&rft.epage=169&rft.pages=160-169&rft.issn=0014-4886&rft.eissn=1090-2430&rft.coden=EXNEAC&rft_id=info:doi/10.1016/j.expneurol.2012.06.020&rft_dat=%3Cproquest_pubme%3E1033453130%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033453130&rft_id=info:pmid/22750324&rft_els_id=S0014488612002622&rfr_iscdi=true |