The "fossilized" mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate

The mitochondrial genomes of flowering plants vary greatly in size, gene content, gene order, mutation rate and level of RNA editing. However, the narrow phylogenetic breadth of available genomic data has limited our ability to reconstruct these traits in the ancestral flowering plant and, therefore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC biology 2013-04, Vol.11 (1), p.29-29, Article 29
Hauptverfasser: Richardson, Aaron O, Rice, Danny W, Young, Gregory J, Alverson, Andrew J, Palmer, Jeffrey D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1
container_start_page 29
container_title BMC biology
container_volume 11
creator Richardson, Aaron O
Rice, Danny W
Young, Gregory J
Alverson, Andrew J
Palmer, Jeffrey D
description The mitochondrial genomes of flowering plants vary greatly in size, gene content, gene order, mutation rate and level of RNA editing. However, the narrow phylogenetic breadth of available genomic data has limited our ability to reconstruct these traits in the ancestral flowering plant and, therefore, to infer subsequent patterns of evolution across angiosperms. We sequenced the mitochondrial genome of Liriodendron tulipifera, the first from outside the monocots or eudicots. This 553,721 bp mitochondrial genome has evolved remarkably slowly in virtually all respects, with an extraordinarily low genome-wide silent substitution rate, retention of genes frequently lost in other angiosperm lineages, and conservation of ancestral gene clusters. The mitochondrial protein genes in Liriodendron are the most heavily edited of any angiosperm characterized to date. Most of these sites are also edited in various other lineages, which allowed us to polarize losses of editing sites in other parts of the angiosperm phylogeny. Finally, we added comprehensive gene sequence data for two other magnoliids, Magnolia stellata and the more distantly related Calycanthus floridus, to measure rates of sequence evolution in Liriodendron with greater accuracy. The Magnolia genome has evolved at an even lower rate, revealing a roughly 5,000-fold range of synonymous-site divergence among angiosperms whose mitochondrial gene space has been comprehensively sequenced. Using Liriodendron as a guide, we estimate that the ancestral flowering plant mitochondrial genome contained 41 protein genes, 14 tRNA genes of mitochondrial origin, as many as 7 tRNA genes of chloroplast origin, >700 sites of RNA editing, and some 14 colinear gene clusters. Many of these gene clusters, genes and RNA editing sites have been variously lost in different lineages over the course of the ensuing ∽200 million years of angiosperm evolution.
doi_str_mv 10.1186/1741-7007-11-29
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3646698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534639098</galeid><sourcerecordid>A534639098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c655t-728b594ea7443165ecdeee8197f057873bef3f34dd76a13d09d60be3dd83d4a33</originalsourceid><addsrcrecordid>eNqNkltrFDEUxwdR7EWffZNQXyp02mSSTGZ8EErxUlgoaPU1ZCcnuykzyZpktPXj-EnN7tZ1VwQlkMvJ75yck_MvimcEnxLS1GdEMFIKjEVJSFm1D4r9jeXh1n6vOIjxBuOKC0EfF3sV5Y3AdbNf_LieAzoyPkbb2--gj9Bgk-_m3ulgVY9m4PwAyBs0scF6DdnuHUpjbxfWQFCvkHIdxBTWMKDOuwQuZbNGPmgIJ1sEaJusm6FoE8STFQO3-SaD1qlg-zvU-29oGJNKNr8TVIInxSOj-ghP79fD4tPbN9cX78vJ1bvLi_NJ2dWcp1JUzZS3DJRgjJKaQ6cBoCGtMJiLRtApGGoo01rUilCNW13jKVCtG6qZovSweL2OuxinA-guF5FTlotgBxXupFdW7t44O5cz_1XSmtV12-QAx_cBgv8y5orlYGMHfa8c-DFKwnjDqzxV_0YpawUmuUcZffEHeuPH4PJPZEoIxlteNb-pmepBWmd8TrFbBpXnnLKatniV4elfqDw0DDY3DozN9h2HlzsOq-beppkaY5SXHz_8P3v1eZc9W7NdyNILYDbfTLBcKlsutSuX2s1HWbXZ4_l2dzb8LynTn63J9BA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1377459528</pqid></control><display><type>article</type><title>The "fossilized" mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Richardson, Aaron O ; Rice, Danny W ; Young, Gregory J ; Alverson, Andrew J ; Palmer, Jeffrey D</creator><creatorcontrib>Richardson, Aaron O ; Rice, Danny W ; Young, Gregory J ; Alverson, Andrew J ; Palmer, Jeffrey D</creatorcontrib><description>The mitochondrial genomes of flowering plants vary greatly in size, gene content, gene order, mutation rate and level of RNA editing. However, the narrow phylogenetic breadth of available genomic data has limited our ability to reconstruct these traits in the ancestral flowering plant and, therefore, to infer subsequent patterns of evolution across angiosperms. We sequenced the mitochondrial genome of Liriodendron tulipifera, the first from outside the monocots or eudicots. This 553,721 bp mitochondrial genome has evolved remarkably slowly in virtually all respects, with an extraordinarily low genome-wide silent substitution rate, retention of genes frequently lost in other angiosperm lineages, and conservation of ancestral gene clusters. The mitochondrial protein genes in Liriodendron are the most heavily edited of any angiosperm characterized to date. Most of these sites are also edited in various other lineages, which allowed us to polarize losses of editing sites in other parts of the angiosperm phylogeny. Finally, we added comprehensive gene sequence data for two other magnoliids, Magnolia stellata and the more distantly related Calycanthus floridus, to measure rates of sequence evolution in Liriodendron with greater accuracy. The Magnolia genome has evolved at an even lower rate, revealing a roughly 5,000-fold range of synonymous-site divergence among angiosperms whose mitochondrial gene space has been comprehensively sequenced. Using Liriodendron as a guide, we estimate that the ancestral flowering plant mitochondrial genome contained 41 protein genes, 14 tRNA genes of mitochondrial origin, as many as 7 tRNA genes of chloroplast origin, &gt;700 sites of RNA editing, and some 14 colinear gene clusters. Many of these gene clusters, genes and RNA editing sites have been variously lost in different lineages over the course of the ensuing ∽200 million years of angiosperm evolution.</description><identifier>ISSN: 1741-7007</identifier><identifier>EISSN: 1741-7007</identifier><identifier>DOI: 10.1186/1741-7007-11-29</identifier><identifier>PMID: 23587068</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Base Pairing - genetics ; Calycanthus floridus ; Cluster analysis ; Confidence intervals ; DNA, Chloroplast - genetics ; Evolution ; Evolution, Molecular ; Fossils ; Gene Order - genetics ; Genes ; Genetic aspects ; Genetic variation ; Genetics ; Genome Size - genetics ; Genome, Mitochondrial - genetics ; Genomes ; Genomics ; Grasses ; Liriodendron ; Liriodendron - genetics ; Liriodendron tulipifera ; Magnolia ; Mitochondrial DNA ; Multigene Family - genetics ; Mutation Rate ; Phylogenetics ; Phylogeny ; Physiological aspects ; Plastids - genetics ; RNA Editing - genetics ; RNA, Transfer - genetics</subject><ispartof>BMC biology, 2013-04, Vol.11 (1), p.29-29, Article 29</ispartof><rights>COPYRIGHT 2013 BioMed Central Ltd.</rights><rights>2013 Richardson et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2013 Richardson et al.; licensee BioMed Central Ltd. 2013 Richardson et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c655t-728b594ea7443165ecdeee8197f057873bef3f34dd76a13d09d60be3dd83d4a33</citedby><cites>FETCH-LOGICAL-c655t-728b594ea7443165ecdeee8197f057873bef3f34dd76a13d09d60be3dd83d4a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646698/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646698/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23587068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Richardson, Aaron O</creatorcontrib><creatorcontrib>Rice, Danny W</creatorcontrib><creatorcontrib>Young, Gregory J</creatorcontrib><creatorcontrib>Alverson, Andrew J</creatorcontrib><creatorcontrib>Palmer, Jeffrey D</creatorcontrib><title>The "fossilized" mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate</title><title>BMC biology</title><addtitle>BMC Biol</addtitle><description>The mitochondrial genomes of flowering plants vary greatly in size, gene content, gene order, mutation rate and level of RNA editing. However, the narrow phylogenetic breadth of available genomic data has limited our ability to reconstruct these traits in the ancestral flowering plant and, therefore, to infer subsequent patterns of evolution across angiosperms. We sequenced the mitochondrial genome of Liriodendron tulipifera, the first from outside the monocots or eudicots. This 553,721 bp mitochondrial genome has evolved remarkably slowly in virtually all respects, with an extraordinarily low genome-wide silent substitution rate, retention of genes frequently lost in other angiosperm lineages, and conservation of ancestral gene clusters. The mitochondrial protein genes in Liriodendron are the most heavily edited of any angiosperm characterized to date. Most of these sites are also edited in various other lineages, which allowed us to polarize losses of editing sites in other parts of the angiosperm phylogeny. Finally, we added comprehensive gene sequence data for two other magnoliids, Magnolia stellata and the more distantly related Calycanthus floridus, to measure rates of sequence evolution in Liriodendron with greater accuracy. The Magnolia genome has evolved at an even lower rate, revealing a roughly 5,000-fold range of synonymous-site divergence among angiosperms whose mitochondrial gene space has been comprehensively sequenced. Using Liriodendron as a guide, we estimate that the ancestral flowering plant mitochondrial genome contained 41 protein genes, 14 tRNA genes of mitochondrial origin, as many as 7 tRNA genes of chloroplast origin, &gt;700 sites of RNA editing, and some 14 colinear gene clusters. Many of these gene clusters, genes and RNA editing sites have been variously lost in different lineages over the course of the ensuing ∽200 million years of angiosperm evolution.</description><subject>Base Pairing - genetics</subject><subject>Calycanthus floridus</subject><subject>Cluster analysis</subject><subject>Confidence intervals</subject><subject>DNA, Chloroplast - genetics</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Fossils</subject><subject>Gene Order - genetics</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic variation</subject><subject>Genetics</subject><subject>Genome Size - genetics</subject><subject>Genome, Mitochondrial - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Grasses</subject><subject>Liriodendron</subject><subject>Liriodendron - genetics</subject><subject>Liriodendron tulipifera</subject><subject>Magnolia</subject><subject>Mitochondrial DNA</subject><subject>Multigene Family - genetics</subject><subject>Mutation Rate</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physiological aspects</subject><subject>Plastids - genetics</subject><subject>RNA Editing - genetics</subject><subject>RNA, Transfer - genetics</subject><issn>1741-7007</issn><issn>1741-7007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkltrFDEUxwdR7EWffZNQXyp02mSSTGZ8EErxUlgoaPU1ZCcnuykzyZpktPXj-EnN7tZ1VwQlkMvJ75yck_MvimcEnxLS1GdEMFIKjEVJSFm1D4r9jeXh1n6vOIjxBuOKC0EfF3sV5Y3AdbNf_LieAzoyPkbb2--gj9Bgk-_m3ulgVY9m4PwAyBs0scF6DdnuHUpjbxfWQFCvkHIdxBTWMKDOuwQuZbNGPmgIJ1sEaJusm6FoE8STFQO3-SaD1qlg-zvU-29oGJNKNr8TVIInxSOj-ghP79fD4tPbN9cX78vJ1bvLi_NJ2dWcp1JUzZS3DJRgjJKaQ6cBoCGtMJiLRtApGGoo01rUilCNW13jKVCtG6qZovSweL2OuxinA-guF5FTlotgBxXupFdW7t44O5cz_1XSmtV12-QAx_cBgv8y5orlYGMHfa8c-DFKwnjDqzxV_0YpawUmuUcZffEHeuPH4PJPZEoIxlteNb-pmepBWmd8TrFbBpXnnLKatniV4elfqDw0DDY3DozN9h2HlzsOq-beppkaY5SXHz_8P3v1eZc9W7NdyNILYDbfTLBcKlsutSuX2s1HWbXZ4_l2dzb8LynTn63J9BA</recordid><startdate>20130415</startdate><enddate>20130415</enddate><creator>Richardson, Aaron O</creator><creator>Rice, Danny W</creator><creator>Young, Gregory J</creator><creator>Alverson, Andrew J</creator><creator>Palmer, Jeffrey D</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>4U-</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130415</creationdate><title>The "fossilized" mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate</title><author>Richardson, Aaron O ; Rice, Danny W ; Young, Gregory J ; Alverson, Andrew J ; Palmer, Jeffrey D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c655t-728b594ea7443165ecdeee8197f057873bef3f34dd76a13d09d60be3dd83d4a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Base Pairing - genetics</topic><topic>Calycanthus floridus</topic><topic>Cluster analysis</topic><topic>Confidence intervals</topic><topic>DNA, Chloroplast - genetics</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Fossils</topic><topic>Gene Order - genetics</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic variation</topic><topic>Genetics</topic><topic>Genome Size - genetics</topic><topic>Genome, Mitochondrial - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Grasses</topic><topic>Liriodendron</topic><topic>Liriodendron - genetics</topic><topic>Liriodendron tulipifera</topic><topic>Magnolia</topic><topic>Mitochondrial DNA</topic><topic>Multigene Family - genetics</topic><topic>Mutation Rate</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physiological aspects</topic><topic>Plastids - genetics</topic><topic>RNA Editing - genetics</topic><topic>RNA, Transfer - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, Aaron O</creatorcontrib><creatorcontrib>Rice, Danny W</creatorcontrib><creatorcontrib>Young, Gregory J</creatorcontrib><creatorcontrib>Alverson, Andrew J</creatorcontrib><creatorcontrib>Palmer, Jeffrey D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>University Readers</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, Aaron O</au><au>Rice, Danny W</au><au>Young, Gregory J</au><au>Alverson, Andrew J</au><au>Palmer, Jeffrey D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The "fossilized" mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate</atitle><jtitle>BMC biology</jtitle><addtitle>BMC Biol</addtitle><date>2013-04-15</date><risdate>2013</risdate><volume>11</volume><issue>1</issue><spage>29</spage><epage>29</epage><pages>29-29</pages><artnum>29</artnum><issn>1741-7007</issn><eissn>1741-7007</eissn><abstract>The mitochondrial genomes of flowering plants vary greatly in size, gene content, gene order, mutation rate and level of RNA editing. However, the narrow phylogenetic breadth of available genomic data has limited our ability to reconstruct these traits in the ancestral flowering plant and, therefore, to infer subsequent patterns of evolution across angiosperms. We sequenced the mitochondrial genome of Liriodendron tulipifera, the first from outside the monocots or eudicots. This 553,721 bp mitochondrial genome has evolved remarkably slowly in virtually all respects, with an extraordinarily low genome-wide silent substitution rate, retention of genes frequently lost in other angiosperm lineages, and conservation of ancestral gene clusters. The mitochondrial protein genes in Liriodendron are the most heavily edited of any angiosperm characterized to date. Most of these sites are also edited in various other lineages, which allowed us to polarize losses of editing sites in other parts of the angiosperm phylogeny. Finally, we added comprehensive gene sequence data for two other magnoliids, Magnolia stellata and the more distantly related Calycanthus floridus, to measure rates of sequence evolution in Liriodendron with greater accuracy. The Magnolia genome has evolved at an even lower rate, revealing a roughly 5,000-fold range of synonymous-site divergence among angiosperms whose mitochondrial gene space has been comprehensively sequenced. Using Liriodendron as a guide, we estimate that the ancestral flowering plant mitochondrial genome contained 41 protein genes, 14 tRNA genes of mitochondrial origin, as many as 7 tRNA genes of chloroplast origin, &gt;700 sites of RNA editing, and some 14 colinear gene clusters. Many of these gene clusters, genes and RNA editing sites have been variously lost in different lineages over the course of the ensuing ∽200 million years of angiosperm evolution.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>23587068</pmid><doi>10.1186/1741-7007-11-29</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-7007
ispartof BMC biology, 2013-04, Vol.11 (1), p.29-29, Article 29
issn 1741-7007
1741-7007
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3646698
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central; Springer Nature OA/Free Journals; SpringerLink Journals - AutoHoldings
subjects Base Pairing - genetics
Calycanthus floridus
Cluster analysis
Confidence intervals
DNA, Chloroplast - genetics
Evolution
Evolution, Molecular
Fossils
Gene Order - genetics
Genes
Genetic aspects
Genetic variation
Genetics
Genome Size - genetics
Genome, Mitochondrial - genetics
Genomes
Genomics
Grasses
Liriodendron
Liriodendron - genetics
Liriodendron tulipifera
Magnolia
Mitochondrial DNA
Multigene Family - genetics
Mutation Rate
Phylogenetics
Phylogeny
Physiological aspects
Plastids - genetics
RNA Editing - genetics
RNA, Transfer - genetics
title The "fossilized" mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20%22fossilized%22%20mitochondrial%20genome%20of%20Liriodendron%20tulipifera:%20ancestral%20gene%20content%20and%20order,%20ancestral%20editing%20sites,%20and%20extraordinarily%20low%20mutation%20rate&rft.jtitle=BMC%20biology&rft.au=Richardson,%20Aaron%20O&rft.date=2013-04-15&rft.volume=11&rft.issue=1&rft.spage=29&rft.epage=29&rft.pages=29-29&rft.artnum=29&rft.issn=1741-7007&rft.eissn=1741-7007&rft_id=info:doi/10.1186/1741-7007-11-29&rft_dat=%3Cgale_pubme%3EA534639098%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1377459528&rft_id=info:pmid/23587068&rft_galeid=A534639098&rfr_iscdi=true