Multipolar radiation of quantum emitters with nanowire optical antennas

Multipolar transitions other than electric dipoles are generally too weak to be observed at optical frequencies in single quantum emitters. For example, fluorescent molecules and quantum dots have dimensions much smaller than the wavelength of light and therefore emit predominantly as electric dipol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2013-04, Vol.4 (1), p.1750-1750, Article 1750
Hauptverfasser: Curto, Alberto G., Taminiau, Tim H., Volpe, Giorgio, Kreuzer, Mark P., Quidant, Romain, van Hulst, Niek F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1750
container_issue 1
container_start_page 1750
container_title Nature communications
container_volume 4
creator Curto, Alberto G.
Taminiau, Tim H.
Volpe, Giorgio
Kreuzer, Mark P.
Quidant, Romain
van Hulst, Niek F.
description Multipolar transitions other than electric dipoles are generally too weak to be observed at optical frequencies in single quantum emitters. For example, fluorescent molecules and quantum dots have dimensions much smaller than the wavelength of light and therefore emit predominantly as electric dipoles. Here we demonstrate controlled emission of a quantum dot into multipolar radiation through selective coupling to a linear nanowire antenna. The antenna resonance tailors the interaction of the quantum dot with light, effectively creating a hybrid nanoscale source beyond the simple Hertz dipole. Our findings establish a basis for the controlled driving of fundamental modes in nanoantennas and metamaterials, for the understanding of the coupling of quantum emitters to nanophotonic devices such as waveguides and nanolasers, and for the development of innovative quantum nano-optics components with properties not found in nature. Nanoantennas provide improvements in detection and fluorescence of nanoscale objects, which are usually limited to electric dipole radiation. By exploiting coupling to nanowire antennas, Curto et al . show controlled multipolar emission of a quantum dot, offering a novel multipolar photon source.
doi_str_mv 10.1038/ncomms2769
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3644100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1346117847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-c310fb02cc27dd9e6ac3bca4ad39843e8ccace66ab5f1da7a769d480b96b2513</originalsourceid><addsrcrecordid>eNplkU1LAzEQhoMoVmov_gBZ8CLK6uaj-3ERpGgVKl56D7PZbJuym7RJ1uK_N6W1Vs1lAvPwzjvzInSBkzuc0PxeC9O2jmRpcYTOSMJwjDNCjw_-PTRwbpGERwucM3aKeoSmmJACn6HxW9d4tTQN2MhCpcAroyNTR6sOtO_aSLbKe2ldtFZ-HmnQZq2sjMzSKwFNFCCpNbhzdFJD4-RgV_to-vw0Hb3Ek_fx6-hxEgvGiI8FxUldJkQIklVVIVMQtBTAoKJFzqjMhQAh0xTKYY0ryCDsVbE8KYu0JENM--hhK7vsylZWQmpvoeFLq1qwn9yA4r87Ws35zHxwmjKGwwX66HonYM2qk87zVjkhmwa0NJ3jmLIU4yxnWUCv_qAL01kdtttQRU4ZzjaObraUsMY5K-u9GZzwTUL8J6EAXx7a36PfeQTgdgu40NIzaQ9m_pf7Asivne4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349834171</pqid></control><display><type>article</type><title>Multipolar radiation of quantum emitters with nanowire optical antennas</title><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Curto, Alberto G. ; Taminiau, Tim H. ; Volpe, Giorgio ; Kreuzer, Mark P. ; Quidant, Romain ; van Hulst, Niek F.</creator><creatorcontrib>Curto, Alberto G. ; Taminiau, Tim H. ; Volpe, Giorgio ; Kreuzer, Mark P. ; Quidant, Romain ; van Hulst, Niek F.</creatorcontrib><description>Multipolar transitions other than electric dipoles are generally too weak to be observed at optical frequencies in single quantum emitters. For example, fluorescent molecules and quantum dots have dimensions much smaller than the wavelength of light and therefore emit predominantly as electric dipoles. Here we demonstrate controlled emission of a quantum dot into multipolar radiation through selective coupling to a linear nanowire antenna. The antenna resonance tailors the interaction of the quantum dot with light, effectively creating a hybrid nanoscale source beyond the simple Hertz dipole. Our findings establish a basis for the controlled driving of fundamental modes in nanoantennas and metamaterials, for the understanding of the coupling of quantum emitters to nanophotonic devices such as waveguides and nanolasers, and for the development of innovative quantum nano-optics components with properties not found in nature. Nanoantennas provide improvements in detection and fluorescence of nanoscale objects, which are usually limited to electric dipole radiation. By exploiting coupling to nanowire antennas, Curto et al . show controlled multipolar emission of a quantum dot, offering a novel multipolar photon source.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms2769</identifier><identifier>PMID: 23612291</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/400 ; 639/925/357/1016 ; 639/925/357/1017 ; Antennas ; Electrons ; Glass substrates ; Humanities and Social Sciences ; multidisciplinary ; Nanowires ; Optics ; Quantum dots ; Radiation ; Science ; Science (multidisciplinary) ; Symmetry</subject><ispartof>Nature communications, 2013-04, Vol.4 (1), p.1750-1750, Article 1750</ispartof><rights>The Author(s) 2013</rights><rights>Copyright Nature Publishing Group Apr 2013</rights><rights>Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2013 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-c310fb02cc27dd9e6ac3bca4ad39843e8ccace66ab5f1da7a769d480b96b2513</citedby><cites>FETCH-LOGICAL-c442t-c310fb02cc27dd9e6ac3bca4ad39843e8ccace66ab5f1da7a769d480b96b2513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644100/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644100/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23612291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Curto, Alberto G.</creatorcontrib><creatorcontrib>Taminiau, Tim H.</creatorcontrib><creatorcontrib>Volpe, Giorgio</creatorcontrib><creatorcontrib>Kreuzer, Mark P.</creatorcontrib><creatorcontrib>Quidant, Romain</creatorcontrib><creatorcontrib>van Hulst, Niek F.</creatorcontrib><title>Multipolar radiation of quantum emitters with nanowire optical antennas</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Multipolar transitions other than electric dipoles are generally too weak to be observed at optical frequencies in single quantum emitters. For example, fluorescent molecules and quantum dots have dimensions much smaller than the wavelength of light and therefore emit predominantly as electric dipoles. Here we demonstrate controlled emission of a quantum dot into multipolar radiation through selective coupling to a linear nanowire antenna. The antenna resonance tailors the interaction of the quantum dot with light, effectively creating a hybrid nanoscale source beyond the simple Hertz dipole. Our findings establish a basis for the controlled driving of fundamental modes in nanoantennas and metamaterials, for the understanding of the coupling of quantum emitters to nanophotonic devices such as waveguides and nanolasers, and for the development of innovative quantum nano-optics components with properties not found in nature. Nanoantennas provide improvements in detection and fluorescence of nanoscale objects, which are usually limited to electric dipole radiation. By exploiting coupling to nanowire antennas, Curto et al . show controlled multipolar emission of a quantum dot, offering a novel multipolar photon source.</description><subject>639/766/400</subject><subject>639/925/357/1016</subject><subject>639/925/357/1017</subject><subject>Antennas</subject><subject>Electrons</subject><subject>Glass substrates</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nanowires</subject><subject>Optics</subject><subject>Quantum dots</subject><subject>Radiation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Symmetry</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU1LAzEQhoMoVmov_gBZ8CLK6uaj-3ERpGgVKl56D7PZbJuym7RJ1uK_N6W1Vs1lAvPwzjvzInSBkzuc0PxeC9O2jmRpcYTOSMJwjDNCjw_-PTRwbpGERwucM3aKeoSmmJACn6HxW9d4tTQN2MhCpcAroyNTR6sOtO_aSLbKe2ldtFZ-HmnQZq2sjMzSKwFNFCCpNbhzdFJD4-RgV_to-vw0Hb3Ek_fx6-hxEgvGiI8FxUldJkQIklVVIVMQtBTAoKJFzqjMhQAh0xTKYY0ryCDsVbE8KYu0JENM--hhK7vsylZWQmpvoeFLq1qwn9yA4r87Ws35zHxwmjKGwwX66HonYM2qk87zVjkhmwa0NJ3jmLIU4yxnWUCv_qAL01kdtttQRU4ZzjaObraUsMY5K-u9GZzwTUL8J6EAXx7a36PfeQTgdgu40NIzaQ9m_pf7Asivne4</recordid><startdate>20130423</startdate><enddate>20130423</enddate><creator>Curto, Alberto G.</creator><creator>Taminiau, Tim H.</creator><creator>Volpe, Giorgio</creator><creator>Kreuzer, Mark P.</creator><creator>Quidant, Romain</creator><creator>van Hulst, Niek F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130423</creationdate><title>Multipolar radiation of quantum emitters with nanowire optical antennas</title><author>Curto, Alberto G. ; Taminiau, Tim H. ; Volpe, Giorgio ; Kreuzer, Mark P. ; Quidant, Romain ; van Hulst, Niek F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-c310fb02cc27dd9e6ac3bca4ad39843e8ccace66ab5f1da7a769d480b96b2513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/766/400</topic><topic>639/925/357/1016</topic><topic>639/925/357/1017</topic><topic>Antennas</topic><topic>Electrons</topic><topic>Glass substrates</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nanowires</topic><topic>Optics</topic><topic>Quantum dots</topic><topic>Radiation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curto, Alberto G.</creatorcontrib><creatorcontrib>Taminiau, Tim H.</creatorcontrib><creatorcontrib>Volpe, Giorgio</creatorcontrib><creatorcontrib>Kreuzer, Mark P.</creatorcontrib><creatorcontrib>Quidant, Romain</creatorcontrib><creatorcontrib>van Hulst, Niek F.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curto, Alberto G.</au><au>Taminiau, Tim H.</au><au>Volpe, Giorgio</au><au>Kreuzer, Mark P.</au><au>Quidant, Romain</au><au>van Hulst, Niek F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multipolar radiation of quantum emitters with nanowire optical antennas</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2013-04-23</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>1750</spage><epage>1750</epage><pages>1750-1750</pages><artnum>1750</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Multipolar transitions other than electric dipoles are generally too weak to be observed at optical frequencies in single quantum emitters. For example, fluorescent molecules and quantum dots have dimensions much smaller than the wavelength of light and therefore emit predominantly as electric dipoles. Here we demonstrate controlled emission of a quantum dot into multipolar radiation through selective coupling to a linear nanowire antenna. The antenna resonance tailors the interaction of the quantum dot with light, effectively creating a hybrid nanoscale source beyond the simple Hertz dipole. Our findings establish a basis for the controlled driving of fundamental modes in nanoantennas and metamaterials, for the understanding of the coupling of quantum emitters to nanophotonic devices such as waveguides and nanolasers, and for the development of innovative quantum nano-optics components with properties not found in nature. Nanoantennas provide improvements in detection and fluorescence of nanoscale objects, which are usually limited to electric dipole radiation. By exploiting coupling to nanowire antennas, Curto et al . show controlled multipolar emission of a quantum dot, offering a novel multipolar photon source.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23612291</pmid><doi>10.1038/ncomms2769</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2013-04, Vol.4 (1), p.1750-1750, Article 1750
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3644100
source Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 639/766/400
639/925/357/1016
639/925/357/1017
Antennas
Electrons
Glass substrates
Humanities and Social Sciences
multidisciplinary
Nanowires
Optics
Quantum dots
Radiation
Science
Science (multidisciplinary)
Symmetry
title Multipolar radiation of quantum emitters with nanowire optical antennas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multipolar%20radiation%20of%20quantum%20emitters%20with%20nanowire%20optical%20antennas&rft.jtitle=Nature%20communications&rft.au=Curto,%20Alberto%20G.&rft.date=2013-04-23&rft.volume=4&rft.issue=1&rft.spage=1750&rft.epage=1750&rft.pages=1750-1750&rft.artnum=1750&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms2769&rft_dat=%3Cproquest_pubme%3E1346117847%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349834171&rft_id=info:pmid/23612291&rfr_iscdi=true