A role for Piezo2 in EPAC1-dependent mechanical allodynia

Aberrant mechanosensation has an important role in different pain states. Here we show that Epac1 (cyclic AMP sensor) potentiation of Piezo2-mediated mechanotransduction contributes to mechanical allodynia. Dorsal root ganglia Epac1 mRNA levels increase during neuropathic pain, and nerve damage-indu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2013-04, Vol.4 (1), p.1682, Article 1682
Hauptverfasser: Eijkelkamp, N, Linley, J.E., Torres, J.M., Bee, L., Dickenson, A.H., Gringhuis, M., Minett, M.S., Hong, G.S., Lee, E., Oh, U., Ishikawa, Y., Zwartkuis, F.J., Cox, J.J., Wood, J.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1682
container_title Nature communications
container_volume 4
creator Eijkelkamp, N
Linley, J.E.
Torres, J.M.
Bee, L.
Dickenson, A.H.
Gringhuis, M.
Minett, M.S.
Hong, G.S.
Lee, E.
Oh, U.
Ishikawa, Y.
Zwartkuis, F.J.
Cox, J.J.
Wood, J.N.
description Aberrant mechanosensation has an important role in different pain states. Here we show that Epac1 (cyclic AMP sensor) potentiation of Piezo2-mediated mechanotransduction contributes to mechanical allodynia. Dorsal root ganglia Epac1 mRNA levels increase during neuropathic pain, and nerve damage-induced allodynia is reduced in Epac1−/− mice. The Epac-selective cAMP analogue 8-pCPT sensitizes mechanically evoked currents in sensory neurons. Human Piezo2 produces large mechanically gated currents that are enhanced by the activation of the cAMP-sensor Epac1 or cytosolic calcium but are unaffected by protein kinase C or protein kinase A and depend on the integrity of the cytoskeleton. In vivo , 8-pCPT induces long-lasting allodynia that is prevented by the knockdown of Epac1 and attenuated by mouse Piezo2 knockdown. Piezo2 knockdown also enhanced thresholds for light touch. Finally, 8-pCPT sensitizes responses to innocuous mechanical stimuli without changing the electrical excitability of sensory fibres. These data indicate that the Epac1–Piezo2 axis has a role in the development of mechanical allodynia during neuropathic pain. Mechanical allodynia describes the process whereby innocuous stimuli is perceived as being noxious and is a common symptom of neuropathic pain. Using mice deficient in the cAMP sensor Epac1, the authors in this study find that Epac1 regulates mechanical allodynia by sensitizing the mechanotransducer Piezo2.
doi_str_mv 10.1038/ncomms2673
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3644070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2966395661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-25e55da004b078b63bcba361eae1090404597a43b2aeb13ef15569a45d21c39f3</originalsourceid><addsrcrecordid>eNplkVtLAzEQhYMottS--ANkwRdRVnPdy4tQSr2AYB_0OWSzs-2W3aQmXaH-eiOttWpeJjAfZ87MQeiU4GuCWXZjtG1bT5OUHaA-xZzEJKXscO_fQ0PvFzg8lpOM82PUo0ykIsmSPspHkbMNRJV10bSGD0uj2kST6WhM4hKWYEowq6gFPVem1qqJVNPYcm1qdYKOKtV4GG7rAL3eTV7GD_HT8_3jePQUa87pKqYChCgVxrzAaVYkrNCFYgkBBQTnmGMu8lRxVlAFBWFQESGSXHFRUqJZXrEBut3oLruihVIHP041cunqVrm1tKqWvzumnsuZfZcs4RynOAhcbAWcfevAr2Rbew1NowzYzkvCwvWooDkN6PkfdGE7Z8J6geJ5xsIFWaAuN5R21nsH1c4MwfIrFPkTSoDP9u3v0O8IAnC1AXxomRm4vZn_5T4BKd6VSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349833913</pqid></control><display><type>article</type><title>A role for Piezo2 in EPAC1-dependent mechanical allodynia</title><source>MEDLINE</source><source>Nature Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Eijkelkamp, N ; Linley, J.E. ; Torres, J.M. ; Bee, L. ; Dickenson, A.H. ; Gringhuis, M. ; Minett, M.S. ; Hong, G.S. ; Lee, E. ; Oh, U. ; Ishikawa, Y. ; Zwartkuis, F.J. ; Cox, J.J. ; Wood, J.N.</creator><creatorcontrib>Eijkelkamp, N ; Linley, J.E. ; Torres, J.M. ; Bee, L. ; Dickenson, A.H. ; Gringhuis, M. ; Minett, M.S. ; Hong, G.S. ; Lee, E. ; Oh, U. ; Ishikawa, Y. ; Zwartkuis, F.J. ; Cox, J.J. ; Wood, J.N.</creatorcontrib><description>Aberrant mechanosensation has an important role in different pain states. Here we show that Epac1 (cyclic AMP sensor) potentiation of Piezo2-mediated mechanotransduction contributes to mechanical allodynia. Dorsal root ganglia Epac1 mRNA levels increase during neuropathic pain, and nerve damage-induced allodynia is reduced in Epac1−/− mice. The Epac-selective cAMP analogue 8-pCPT sensitizes mechanically evoked currents in sensory neurons. Human Piezo2 produces large mechanically gated currents that are enhanced by the activation of the cAMP-sensor Epac1 or cytosolic calcium but are unaffected by protein kinase C or protein kinase A and depend on the integrity of the cytoskeleton. In vivo , 8-pCPT induces long-lasting allodynia that is prevented by the knockdown of Epac1 and attenuated by mouse Piezo2 knockdown. Piezo2 knockdown also enhanced thresholds for light touch. Finally, 8-pCPT sensitizes responses to innocuous mechanical stimuli without changing the electrical excitability of sensory fibres. These data indicate that the Epac1–Piezo2 axis has a role in the development of mechanical allodynia during neuropathic pain. Mechanical allodynia describes the process whereby innocuous stimuli is perceived as being noxious and is a common symptom of neuropathic pain. Using mice deficient in the cAMP sensor Epac1, the authors in this study find that Epac1 regulates mechanical allodynia by sensitizing the mechanotransducer Piezo2.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms2673</identifier><identifier>PMID: 23575686</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/2620/410 ; 631/80/79/2066 ; Animals ; Base Sequence ; Cells, Cultured ; Guanine Nucleotide Exchange Factors - metabolism ; Guanine Nucleotide Exchange Factors - physiology ; Humanities and Social Sciences ; Hyperalgesia - etiology ; Ion Channels - physiology ; Mice ; Mice, Inbred C57BL ; Mice, Inbred CBA ; multidisciplinary ; Oligodeoxyribonucleotides ; Science ; Science (multidisciplinary) ; Signal Transduction</subject><ispartof>Nature communications, 2013-04, Vol.4 (1), p.1682, Article 1682</ispartof><rights>The Author(s) 2013</rights><rights>Copyright Nature Publishing Group Apr 2013</rights><rights>Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2013 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-25e55da004b078b63bcba361eae1090404597a43b2aeb13ef15569a45d21c39f3</citedby><cites>FETCH-LOGICAL-c442t-25e55da004b078b63bcba361eae1090404597a43b2aeb13ef15569a45d21c39f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644070/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644070/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23575686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eijkelkamp, N</creatorcontrib><creatorcontrib>Linley, J.E.</creatorcontrib><creatorcontrib>Torres, J.M.</creatorcontrib><creatorcontrib>Bee, L.</creatorcontrib><creatorcontrib>Dickenson, A.H.</creatorcontrib><creatorcontrib>Gringhuis, M.</creatorcontrib><creatorcontrib>Minett, M.S.</creatorcontrib><creatorcontrib>Hong, G.S.</creatorcontrib><creatorcontrib>Lee, E.</creatorcontrib><creatorcontrib>Oh, U.</creatorcontrib><creatorcontrib>Ishikawa, Y.</creatorcontrib><creatorcontrib>Zwartkuis, F.J.</creatorcontrib><creatorcontrib>Cox, J.J.</creatorcontrib><creatorcontrib>Wood, J.N.</creatorcontrib><title>A role for Piezo2 in EPAC1-dependent mechanical allodynia</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Aberrant mechanosensation has an important role in different pain states. Here we show that Epac1 (cyclic AMP sensor) potentiation of Piezo2-mediated mechanotransduction contributes to mechanical allodynia. Dorsal root ganglia Epac1 mRNA levels increase during neuropathic pain, and nerve damage-induced allodynia is reduced in Epac1−/− mice. The Epac-selective cAMP analogue 8-pCPT sensitizes mechanically evoked currents in sensory neurons. Human Piezo2 produces large mechanically gated currents that are enhanced by the activation of the cAMP-sensor Epac1 or cytosolic calcium but are unaffected by protein kinase C or protein kinase A and depend on the integrity of the cytoskeleton. In vivo , 8-pCPT induces long-lasting allodynia that is prevented by the knockdown of Epac1 and attenuated by mouse Piezo2 knockdown. Piezo2 knockdown also enhanced thresholds for light touch. Finally, 8-pCPT sensitizes responses to innocuous mechanical stimuli without changing the electrical excitability of sensory fibres. These data indicate that the Epac1–Piezo2 axis has a role in the development of mechanical allodynia during neuropathic pain. Mechanical allodynia describes the process whereby innocuous stimuli is perceived as being noxious and is a common symptom of neuropathic pain. Using mice deficient in the cAMP sensor Epac1, the authors in this study find that Epac1 regulates mechanical allodynia by sensitizing the mechanotransducer Piezo2.</description><subject>631/378/2620/410</subject><subject>631/80/79/2066</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Cells, Cultured</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>Guanine Nucleotide Exchange Factors - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Hyperalgesia - etiology</subject><subject>Ion Channels - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred CBA</subject><subject>multidisciplinary</subject><subject>Oligodeoxyribonucleotides</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkVtLAzEQhYMottS--ANkwRdRVnPdy4tQSr2AYB_0OWSzs-2W3aQmXaH-eiOttWpeJjAfZ87MQeiU4GuCWXZjtG1bT5OUHaA-xZzEJKXscO_fQ0PvFzg8lpOM82PUo0ykIsmSPspHkbMNRJV10bSGD0uj2kST6WhM4hKWYEowq6gFPVem1qqJVNPYcm1qdYKOKtV4GG7rAL3eTV7GD_HT8_3jePQUa87pKqYChCgVxrzAaVYkrNCFYgkBBQTnmGMu8lRxVlAFBWFQESGSXHFRUqJZXrEBut3oLruihVIHP041cunqVrm1tKqWvzumnsuZfZcs4RynOAhcbAWcfevAr2Rbew1NowzYzkvCwvWooDkN6PkfdGE7Z8J6geJ5xsIFWaAuN5R21nsH1c4MwfIrFPkTSoDP9u3v0O8IAnC1AXxomRm4vZn_5T4BKd6VSw</recordid><startdate>20130409</startdate><enddate>20130409</enddate><creator>Eijkelkamp, N</creator><creator>Linley, J.E.</creator><creator>Torres, J.M.</creator><creator>Bee, L.</creator><creator>Dickenson, A.H.</creator><creator>Gringhuis, M.</creator><creator>Minett, M.S.</creator><creator>Hong, G.S.</creator><creator>Lee, E.</creator><creator>Oh, U.</creator><creator>Ishikawa, Y.</creator><creator>Zwartkuis, F.J.</creator><creator>Cox, J.J.</creator><creator>Wood, J.N.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130409</creationdate><title>A role for Piezo2 in EPAC1-dependent mechanical allodynia</title><author>Eijkelkamp, N ; Linley, J.E. ; Torres, J.M. ; Bee, L. ; Dickenson, A.H. ; Gringhuis, M. ; Minett, M.S. ; Hong, G.S. ; Lee, E. ; Oh, U. ; Ishikawa, Y. ; Zwartkuis, F.J. ; Cox, J.J. ; Wood, J.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-25e55da004b078b63bcba361eae1090404597a43b2aeb13ef15569a45d21c39f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/378/2620/410</topic><topic>631/80/79/2066</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Cells, Cultured</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>Guanine Nucleotide Exchange Factors - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Hyperalgesia - etiology</topic><topic>Ion Channels - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred CBA</topic><topic>multidisciplinary</topic><topic>Oligodeoxyribonucleotides</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eijkelkamp, N</creatorcontrib><creatorcontrib>Linley, J.E.</creatorcontrib><creatorcontrib>Torres, J.M.</creatorcontrib><creatorcontrib>Bee, L.</creatorcontrib><creatorcontrib>Dickenson, A.H.</creatorcontrib><creatorcontrib>Gringhuis, M.</creatorcontrib><creatorcontrib>Minett, M.S.</creatorcontrib><creatorcontrib>Hong, G.S.</creatorcontrib><creatorcontrib>Lee, E.</creatorcontrib><creatorcontrib>Oh, U.</creatorcontrib><creatorcontrib>Ishikawa, Y.</creatorcontrib><creatorcontrib>Zwartkuis, F.J.</creatorcontrib><creatorcontrib>Cox, J.J.</creatorcontrib><creatorcontrib>Wood, J.N.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eijkelkamp, N</au><au>Linley, J.E.</au><au>Torres, J.M.</au><au>Bee, L.</au><au>Dickenson, A.H.</au><au>Gringhuis, M.</au><au>Minett, M.S.</au><au>Hong, G.S.</au><au>Lee, E.</au><au>Oh, U.</au><au>Ishikawa, Y.</au><au>Zwartkuis, F.J.</au><au>Cox, J.J.</au><au>Wood, J.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A role for Piezo2 in EPAC1-dependent mechanical allodynia</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2013-04-09</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>1682</spage><pages>1682-</pages><artnum>1682</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Aberrant mechanosensation has an important role in different pain states. Here we show that Epac1 (cyclic AMP sensor) potentiation of Piezo2-mediated mechanotransduction contributes to mechanical allodynia. Dorsal root ganglia Epac1 mRNA levels increase during neuropathic pain, and nerve damage-induced allodynia is reduced in Epac1−/− mice. The Epac-selective cAMP analogue 8-pCPT sensitizes mechanically evoked currents in sensory neurons. Human Piezo2 produces large mechanically gated currents that are enhanced by the activation of the cAMP-sensor Epac1 or cytosolic calcium but are unaffected by protein kinase C or protein kinase A and depend on the integrity of the cytoskeleton. In vivo , 8-pCPT induces long-lasting allodynia that is prevented by the knockdown of Epac1 and attenuated by mouse Piezo2 knockdown. Piezo2 knockdown also enhanced thresholds for light touch. Finally, 8-pCPT sensitizes responses to innocuous mechanical stimuli without changing the electrical excitability of sensory fibres. These data indicate that the Epac1–Piezo2 axis has a role in the development of mechanical allodynia during neuropathic pain. Mechanical allodynia describes the process whereby innocuous stimuli is perceived as being noxious and is a common symptom of neuropathic pain. Using mice deficient in the cAMP sensor Epac1, the authors in this study find that Epac1 regulates mechanical allodynia by sensitizing the mechanotransducer Piezo2.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23575686</pmid><doi>10.1038/ncomms2673</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2013-04, Vol.4 (1), p.1682, Article 1682
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3644070
source MEDLINE; Nature Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects 631/378/2620/410
631/80/79/2066
Animals
Base Sequence
Cells, Cultured
Guanine Nucleotide Exchange Factors - metabolism
Guanine Nucleotide Exchange Factors - physiology
Humanities and Social Sciences
Hyperalgesia - etiology
Ion Channels - physiology
Mice
Mice, Inbred C57BL
Mice, Inbred CBA
multidisciplinary
Oligodeoxyribonucleotides
Science
Science (multidisciplinary)
Signal Transduction
title A role for Piezo2 in EPAC1-dependent mechanical allodynia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20role%20for%20Piezo2%20in%20EPAC1-dependent%20mechanical%20allodynia&rft.jtitle=Nature%20communications&rft.au=Eijkelkamp,%20N&rft.date=2013-04-09&rft.volume=4&rft.issue=1&rft.spage=1682&rft.pages=1682-&rft.artnum=1682&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms2673&rft_dat=%3Cproquest_pubme%3E2966395661%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349833913&rft_id=info:pmid/23575686&rfr_iscdi=true