The interplay between RPGR, PDEδ and Arl2/3 regulate the ciliary targeting of farnesylated cargo
Defects in primary cilia result in human diseases known as ciliopathies. The retinitis pigmentosa GTPase regulator (RPGR), mutated in the most severe form of the eye disease, is located at the transition zone of the ciliary organelle. The RPGR‐interacting partner PDEδ is involved in trafficking of f...
Gespeichert in:
Veröffentlicht in: | EMBO reports 2013-05, Vol.14 (5), p.465-472 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 472 |
---|---|
container_issue | 5 |
container_start_page | 465 |
container_title | EMBO reports |
container_volume | 14 |
creator | Wätzlich, Denise Vetter, Ingrid Gotthardt, Katja Miertzschke, Mandy Chen, Yong-Xiang Wittinghofer, Alfred Ismail, Shehab |
description | Defects in primary cilia result in human diseases known as ciliopathies. The retinitis pigmentosa GTPase regulator (RPGR), mutated in the most severe form of the eye disease, is located at the transition zone of the ciliary organelle. The RPGR‐interacting partner PDEδ is involved in trafficking of farnesylated ciliary cargo, but the significance of this interaction is unknown. The crystal structure of the propeller domain of RPGR shows the location of patient mutations and how they perturb the structure. The RPGR·PDEδ complex structure shows PDEδ on a highly conserved surface patch of RPGR. Biochemical experiments and structural considerations show that RPGR can bind with high affinity to cargo‐loaded PDEδ and exposes the Arl2/Arl3‐binding site on PDEδ. On the basis of these results, we propose a model where RPGR is acting as a scaffold protein recruiting cargo‐loaded PDEδ and Arl3 to release lipidated cargo into cilia.
The structure of the Retinitis Pigmentosa disease protein RPGR in complex with PDEd explains the features of RPGR patient mutations and suggests a function in ciliary transport in photoreceptor cells. |
doi_str_mv | 10.1038/embor.2013.37 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3642377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1348497425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5107-23ff49de6d5e45dbef7bdd3d3334a8bd516fa9a47b5c2e891ce63a7c0630c8133</originalsourceid><addsrcrecordid>eNp9kc2O0zAUhSMEYn5gyRZ5yYJ0bN84TjZIw1AKUoGqGgRiYzn2TcZD6hQ7naHvxXPwTCTTUsECVr7SPee7Rz5J8oTRCaNQnOGq6sKEUwYTkPeSY5blZQpMFvf3M-fs81FyEuM1pVSUsniYHHEQoqS5PE705RUS53sM61ZvSYX9LaIny8Vs-ZwsXk1__iDaW3IeWn4GJGCzaXWPpB9cxrVOhy3pdWiwd74hXU1qHTzG7SiyxAyb7lHyoNZtxMf79zT5-Hp6efEmnX-Yvb04n6dGMCpTDnWdlRZzKzATtsJaVtaCBYBMF5UVLK91qTNZCcOxKJnBHLQ0NAdqCgZwmrzYcdebaoXWoO-DbtU6uNWQUnXaqb833l2pprtRkGccpBwAz_aA0H3bYOzVykWDbas9dpuoGGRFVsqMi0Ga7qQmdDEGrA9nGFVjLequFjXWomBEP_0z20H9u4dBIHaCW9fi9v80NX33cjnOd-DJzhcHi28wqOtuE_zwz_9Msk_uYo_fD4d0-KqGGFKoT-9narbgMC8WS_UFfgGLXLrT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348497425</pqid></control><display><type>article</type><title>The interplay between RPGR, PDEδ and Arl2/3 regulate the ciliary targeting of farnesylated cargo</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>PubMed Central</source><creator>Wätzlich, Denise ; Vetter, Ingrid ; Gotthardt, Katja ; Miertzschke, Mandy ; Chen, Yong-Xiang ; Wittinghofer, Alfred ; Ismail, Shehab</creator><creatorcontrib>Wätzlich, Denise ; Vetter, Ingrid ; Gotthardt, Katja ; Miertzschke, Mandy ; Chen, Yong-Xiang ; Wittinghofer, Alfred ; Ismail, Shehab</creatorcontrib><description>Defects in primary cilia result in human diseases known as ciliopathies. The retinitis pigmentosa GTPase regulator (RPGR), mutated in the most severe form of the eye disease, is located at the transition zone of the ciliary organelle. The RPGR‐interacting partner PDEδ is involved in trafficking of farnesylated ciliary cargo, but the significance of this interaction is unknown. The crystal structure of the propeller domain of RPGR shows the location of patient mutations and how they perturb the structure. The RPGR·PDEδ complex structure shows PDEδ on a highly conserved surface patch of RPGR. Biochemical experiments and structural considerations show that RPGR can bind with high affinity to cargo‐loaded PDEδ and exposes the Arl2/Arl3‐binding site on PDEδ. On the basis of these results, we propose a model where RPGR is acting as a scaffold protein recruiting cargo‐loaded PDEδ and Arl3 to release lipidated cargo into cilia.
The structure of the Retinitis Pigmentosa disease protein RPGR in complex with PDEd explains the features of RPGR patient mutations and suggests a function in ciliary transport in photoreceptor cells.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.1038/embor.2013.37</identifier><identifier>PMID: 23559067</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>ADP-Ribosylation Factors - chemistry ; Amino Acid Sequence ; Animals ; Arl2/Arl3 ; Binding Sites ; Cilia - physiology ; ciliary trafficking ; Conserved Sequence ; Crystallography, X-Ray ; Cyclic Nucleotide Phosphodiesterases, Type 6 - chemistry ; EMBO20 ; EMBO24 ; Eye Proteins - chemistry ; Eye Proteins - genetics ; GTP-Binding Proteins - chemistry ; Humans ; Lipid Metabolism ; Mice ; Models, Molecular ; Mutation, Missense ; PDEδ ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Prenylation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Transport ; retinitis pigmentosa ; RPGR ; Scientific Report ; Scientific Reports</subject><ispartof>EMBO reports, 2013-05, Vol.14 (5), p.465-472</ispartof><rights>European Molecular Biology Organization 2013</rights><rights>Copyright © 2013 European Molecular Biology Organization</rights><rights>Copyright © 2013, European Molecular Biology Organization 2013 European Molecular Biology Organization</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5107-23ff49de6d5e45dbef7bdd3d3334a8bd516fa9a47b5c2e891ce63a7c0630c8133</citedby><cites>FETCH-LOGICAL-c5107-23ff49de6d5e45dbef7bdd3d3334a8bd516fa9a47b5c2e891ce63a7c0630c8133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642377/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642377/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,1412,1428,27905,27906,45555,45556,46390,46814,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23559067$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wätzlich, Denise</creatorcontrib><creatorcontrib>Vetter, Ingrid</creatorcontrib><creatorcontrib>Gotthardt, Katja</creatorcontrib><creatorcontrib>Miertzschke, Mandy</creatorcontrib><creatorcontrib>Chen, Yong-Xiang</creatorcontrib><creatorcontrib>Wittinghofer, Alfred</creatorcontrib><creatorcontrib>Ismail, Shehab</creatorcontrib><title>The interplay between RPGR, PDEδ and Arl2/3 regulate the ciliary targeting of farnesylated cargo</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Defects in primary cilia result in human diseases known as ciliopathies. The retinitis pigmentosa GTPase regulator (RPGR), mutated in the most severe form of the eye disease, is located at the transition zone of the ciliary organelle. The RPGR‐interacting partner PDEδ is involved in trafficking of farnesylated ciliary cargo, but the significance of this interaction is unknown. The crystal structure of the propeller domain of RPGR shows the location of patient mutations and how they perturb the structure. The RPGR·PDEδ complex structure shows PDEδ on a highly conserved surface patch of RPGR. Biochemical experiments and structural considerations show that RPGR can bind with high affinity to cargo‐loaded PDEδ and exposes the Arl2/Arl3‐binding site on PDEδ. On the basis of these results, we propose a model where RPGR is acting as a scaffold protein recruiting cargo‐loaded PDEδ and Arl3 to release lipidated cargo into cilia.
The structure of the Retinitis Pigmentosa disease protein RPGR in complex with PDEd explains the features of RPGR patient mutations and suggests a function in ciliary transport in photoreceptor cells.</description><subject>ADP-Ribosylation Factors - chemistry</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Arl2/Arl3</subject><subject>Binding Sites</subject><subject>Cilia - physiology</subject><subject>ciliary trafficking</subject><subject>Conserved Sequence</subject><subject>Crystallography, X-Ray</subject><subject>Cyclic Nucleotide Phosphodiesterases, Type 6 - chemistry</subject><subject>EMBO20</subject><subject>EMBO24</subject><subject>Eye Proteins - chemistry</subject><subject>Eye Proteins - genetics</subject><subject>GTP-Binding Proteins - chemistry</subject><subject>Humans</subject><subject>Lipid Metabolism</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Mutation, Missense</subject><subject>PDEδ</subject><subject>Protein Binding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Prenylation</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Secondary</subject><subject>Protein Transport</subject><subject>retinitis pigmentosa</subject><subject>RPGR</subject><subject>Scientific Report</subject><subject>Scientific Reports</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc2O0zAUhSMEYn5gyRZ5yYJ0bN84TjZIw1AKUoGqGgRiYzn2TcZD6hQ7naHvxXPwTCTTUsECVr7SPee7Rz5J8oTRCaNQnOGq6sKEUwYTkPeSY5blZQpMFvf3M-fs81FyEuM1pVSUsniYHHEQoqS5PE705RUS53sM61ZvSYX9LaIny8Vs-ZwsXk1__iDaW3IeWn4GJGCzaXWPpB9cxrVOhy3pdWiwd74hXU1qHTzG7SiyxAyb7lHyoNZtxMf79zT5-Hp6efEmnX-Yvb04n6dGMCpTDnWdlRZzKzATtsJaVtaCBYBMF5UVLK91qTNZCcOxKJnBHLQ0NAdqCgZwmrzYcdebaoXWoO-DbtU6uNWQUnXaqb833l2pprtRkGccpBwAz_aA0H3bYOzVykWDbas9dpuoGGRFVsqMi0Ga7qQmdDEGrA9nGFVjLequFjXWomBEP_0z20H9u4dBIHaCW9fi9v80NX33cjnOd-DJzhcHi28wqOtuE_zwz_9Msk_uYo_fD4d0-KqGGFKoT-9narbgMC8WS_UFfgGLXLrT</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Wätzlich, Denise</creator><creator>Vetter, Ingrid</creator><creator>Gotthardt, Katja</creator><creator>Miertzschke, Mandy</creator><creator>Chen, Yong-Xiang</creator><creator>Wittinghofer, Alfred</creator><creator>Ismail, Shehab</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201305</creationdate><title>The interplay between RPGR, PDEδ and Arl2/3 regulate the ciliary targeting of farnesylated cargo</title><author>Wätzlich, Denise ; Vetter, Ingrid ; Gotthardt, Katja ; Miertzschke, Mandy ; Chen, Yong-Xiang ; Wittinghofer, Alfred ; Ismail, Shehab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5107-23ff49de6d5e45dbef7bdd3d3334a8bd516fa9a47b5c2e891ce63a7c0630c8133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ADP-Ribosylation Factors - chemistry</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Arl2/Arl3</topic><topic>Binding Sites</topic><topic>Cilia - physiology</topic><topic>ciliary trafficking</topic><topic>Conserved Sequence</topic><topic>Crystallography, X-Ray</topic><topic>Cyclic Nucleotide Phosphodiesterases, Type 6 - chemistry</topic><topic>EMBO20</topic><topic>EMBO24</topic><topic>Eye Proteins - chemistry</topic><topic>Eye Proteins - genetics</topic><topic>GTP-Binding Proteins - chemistry</topic><topic>Humans</topic><topic>Lipid Metabolism</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Mutation, Missense</topic><topic>PDEδ</topic><topic>Protein Binding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Prenylation</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Secondary</topic><topic>Protein Transport</topic><topic>retinitis pigmentosa</topic><topic>RPGR</topic><topic>Scientific Report</topic><topic>Scientific Reports</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wätzlich, Denise</creatorcontrib><creatorcontrib>Vetter, Ingrid</creatorcontrib><creatorcontrib>Gotthardt, Katja</creatorcontrib><creatorcontrib>Miertzschke, Mandy</creatorcontrib><creatorcontrib>Chen, Yong-Xiang</creatorcontrib><creatorcontrib>Wittinghofer, Alfred</creatorcontrib><creatorcontrib>Ismail, Shehab</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wätzlich, Denise</au><au>Vetter, Ingrid</au><au>Gotthardt, Katja</au><au>Miertzschke, Mandy</au><au>Chen, Yong-Xiang</au><au>Wittinghofer, Alfred</au><au>Ismail, Shehab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The interplay between RPGR, PDEδ and Arl2/3 regulate the ciliary targeting of farnesylated cargo</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2013-05</date><risdate>2013</risdate><volume>14</volume><issue>5</issue><spage>465</spage><epage>472</epage><pages>465-472</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Defects in primary cilia result in human diseases known as ciliopathies. The retinitis pigmentosa GTPase regulator (RPGR), mutated in the most severe form of the eye disease, is located at the transition zone of the ciliary organelle. The RPGR‐interacting partner PDEδ is involved in trafficking of farnesylated ciliary cargo, but the significance of this interaction is unknown. The crystal structure of the propeller domain of RPGR shows the location of patient mutations and how they perturb the structure. The RPGR·PDEδ complex structure shows PDEδ on a highly conserved surface patch of RPGR. Biochemical experiments and structural considerations show that RPGR can bind with high affinity to cargo‐loaded PDEδ and exposes the Arl2/Arl3‐binding site on PDEδ. On the basis of these results, we propose a model where RPGR is acting as a scaffold protein recruiting cargo‐loaded PDEδ and Arl3 to release lipidated cargo into cilia.
The structure of the Retinitis Pigmentosa disease protein RPGR in complex with PDEd explains the features of RPGR patient mutations and suggests a function in ciliary transport in photoreceptor cells.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>23559067</pmid><doi>10.1038/embor.2013.37</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2013-05, Vol.14 (5), p.465-472 |
issn | 1469-221X 1469-3178 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3642377 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; PubMed Central |
subjects | ADP-Ribosylation Factors - chemistry Amino Acid Sequence Animals Arl2/Arl3 Binding Sites Cilia - physiology ciliary trafficking Conserved Sequence Crystallography, X-Ray Cyclic Nucleotide Phosphodiesterases, Type 6 - chemistry EMBO20 EMBO24 Eye Proteins - chemistry Eye Proteins - genetics GTP-Binding Proteins - chemistry Humans Lipid Metabolism Mice Models, Molecular Mutation, Missense PDEδ Protein Binding Protein Interaction Domains and Motifs Protein Prenylation Protein Structure, Quaternary Protein Structure, Secondary Protein Transport retinitis pigmentosa RPGR Scientific Report Scientific Reports |
title | The interplay between RPGR, PDEδ and Arl2/3 regulate the ciliary targeting of farnesylated cargo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20interplay%20between%20RPGR,%20PDE%CE%B4%20and%20Arl2/3%20regulate%20the%20ciliary%20targeting%20of%20farnesylated%20cargo&rft.jtitle=EMBO%20reports&rft.au=W%C3%A4tzlich,%20Denise&rft.date=2013-05&rft.volume=14&rft.issue=5&rft.spage=465&rft.epage=472&rft.pages=465-472&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.1038/embor.2013.37&rft_dat=%3Cproquest_pubme%3E1348497425%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348497425&rft_id=info:pmid/23559067&rfr_iscdi=true |