The interplay between RPGR, PDEδ and Arl2/3 regulate the ciliary targeting of farnesylated cargo

Defects in primary cilia result in human diseases known as ciliopathies. The retinitis pigmentosa GTPase regulator (RPGR), mutated in the most severe form of the eye disease, is located at the transition zone of the ciliary organelle. The RPGR‐interacting partner PDEδ is involved in trafficking of f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2013-05, Vol.14 (5), p.465-472
Hauptverfasser: Wätzlich, Denise, Vetter, Ingrid, Gotthardt, Katja, Miertzschke, Mandy, Chen, Yong-Xiang, Wittinghofer, Alfred, Ismail, Shehab
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 472
container_issue 5
container_start_page 465
container_title EMBO reports
container_volume 14
creator Wätzlich, Denise
Vetter, Ingrid
Gotthardt, Katja
Miertzschke, Mandy
Chen, Yong-Xiang
Wittinghofer, Alfred
Ismail, Shehab
description Defects in primary cilia result in human diseases known as ciliopathies. The retinitis pigmentosa GTPase regulator (RPGR), mutated in the most severe form of the eye disease, is located at the transition zone of the ciliary organelle. The RPGR‐interacting partner PDEδ is involved in trafficking of farnesylated ciliary cargo, but the significance of this interaction is unknown. The crystal structure of the propeller domain of RPGR shows the location of patient mutations and how they perturb the structure. The RPGR·PDEδ complex structure shows PDEδ on a highly conserved surface patch of RPGR. Biochemical experiments and structural considerations show that RPGR can bind with high affinity to cargo‐loaded PDEδ and exposes the Arl2/Arl3‐binding site on PDEδ. On the basis of these results, we propose a model where RPGR is acting as a scaffold protein recruiting cargo‐loaded PDEδ and Arl3 to release lipidated cargo into cilia. The structure of the Retinitis Pigmentosa disease protein RPGR in complex with PDEd explains the features of RPGR patient mutations and suggests a function in ciliary transport in photoreceptor cells.
doi_str_mv 10.1038/embor.2013.37
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3642377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1348497425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5107-23ff49de6d5e45dbef7bdd3d3334a8bd516fa9a47b5c2e891ce63a7c0630c8133</originalsourceid><addsrcrecordid>eNp9kc2O0zAUhSMEYn5gyRZ5yYJ0bN84TjZIw1AKUoGqGgRiYzn2TcZD6hQ7naHvxXPwTCTTUsECVr7SPee7Rz5J8oTRCaNQnOGq6sKEUwYTkPeSY5blZQpMFvf3M-fs81FyEuM1pVSUsniYHHEQoqS5PE705RUS53sM61ZvSYX9LaIny8Vs-ZwsXk1__iDaW3IeWn4GJGCzaXWPpB9cxrVOhy3pdWiwd74hXU1qHTzG7SiyxAyb7lHyoNZtxMf79zT5-Hp6efEmnX-Yvb04n6dGMCpTDnWdlRZzKzATtsJaVtaCBYBMF5UVLK91qTNZCcOxKJnBHLQ0NAdqCgZwmrzYcdebaoXWoO-DbtU6uNWQUnXaqb833l2pprtRkGccpBwAz_aA0H3bYOzVykWDbas9dpuoGGRFVsqMi0Ga7qQmdDEGrA9nGFVjLequFjXWomBEP_0z20H9u4dBIHaCW9fi9v80NX33cjnOd-DJzhcHi28wqOtuE_zwz_9Msk_uYo_fD4d0-KqGGFKoT-9narbgMC8WS_UFfgGLXLrT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348497425</pqid></control><display><type>article</type><title>The interplay between RPGR, PDEδ and Arl2/3 regulate the ciliary targeting of farnesylated cargo</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>PubMed Central</source><creator>Wätzlich, Denise ; Vetter, Ingrid ; Gotthardt, Katja ; Miertzschke, Mandy ; Chen, Yong-Xiang ; Wittinghofer, Alfred ; Ismail, Shehab</creator><creatorcontrib>Wätzlich, Denise ; Vetter, Ingrid ; Gotthardt, Katja ; Miertzschke, Mandy ; Chen, Yong-Xiang ; Wittinghofer, Alfred ; Ismail, Shehab</creatorcontrib><description>Defects in primary cilia result in human diseases known as ciliopathies. The retinitis pigmentosa GTPase regulator (RPGR), mutated in the most severe form of the eye disease, is located at the transition zone of the ciliary organelle. The RPGR‐interacting partner PDEδ is involved in trafficking of farnesylated ciliary cargo, but the significance of this interaction is unknown. The crystal structure of the propeller domain of RPGR shows the location of patient mutations and how they perturb the structure. The RPGR·PDEδ complex structure shows PDEδ on a highly conserved surface patch of RPGR. Biochemical experiments and structural considerations show that RPGR can bind with high affinity to cargo‐loaded PDEδ and exposes the Arl2/Arl3‐binding site on PDEδ. On the basis of these results, we propose a model where RPGR is acting as a scaffold protein recruiting cargo‐loaded PDEδ and Arl3 to release lipidated cargo into cilia. The structure of the Retinitis Pigmentosa disease protein RPGR in complex with PDEd explains the features of RPGR patient mutations and suggests a function in ciliary transport in photoreceptor cells.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.1038/embor.2013.37</identifier><identifier>PMID: 23559067</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>ADP-Ribosylation Factors - chemistry ; Amino Acid Sequence ; Animals ; Arl2/Arl3 ; Binding Sites ; Cilia - physiology ; ciliary trafficking ; Conserved Sequence ; Crystallography, X-Ray ; Cyclic Nucleotide Phosphodiesterases, Type 6 - chemistry ; EMBO20 ; EMBO24 ; Eye Proteins - chemistry ; Eye Proteins - genetics ; GTP-Binding Proteins - chemistry ; Humans ; Lipid Metabolism ; Mice ; Models, Molecular ; Mutation, Missense ; PDEδ ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Prenylation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Transport ; retinitis pigmentosa ; RPGR ; Scientific Report ; Scientific Reports</subject><ispartof>EMBO reports, 2013-05, Vol.14 (5), p.465-472</ispartof><rights>European Molecular Biology Organization 2013</rights><rights>Copyright © 2013 European Molecular Biology Organization</rights><rights>Copyright © 2013, European Molecular Biology Organization 2013 European Molecular Biology Organization</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5107-23ff49de6d5e45dbef7bdd3d3334a8bd516fa9a47b5c2e891ce63a7c0630c8133</citedby><cites>FETCH-LOGICAL-c5107-23ff49de6d5e45dbef7bdd3d3334a8bd516fa9a47b5c2e891ce63a7c0630c8133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642377/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642377/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,1412,1428,27905,27906,45555,45556,46390,46814,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23559067$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wätzlich, Denise</creatorcontrib><creatorcontrib>Vetter, Ingrid</creatorcontrib><creatorcontrib>Gotthardt, Katja</creatorcontrib><creatorcontrib>Miertzschke, Mandy</creatorcontrib><creatorcontrib>Chen, Yong-Xiang</creatorcontrib><creatorcontrib>Wittinghofer, Alfred</creatorcontrib><creatorcontrib>Ismail, Shehab</creatorcontrib><title>The interplay between RPGR, PDEδ and Arl2/3 regulate the ciliary targeting of farnesylated cargo</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Defects in primary cilia result in human diseases known as ciliopathies. The retinitis pigmentosa GTPase regulator (RPGR), mutated in the most severe form of the eye disease, is located at the transition zone of the ciliary organelle. The RPGR‐interacting partner PDEδ is involved in trafficking of farnesylated ciliary cargo, but the significance of this interaction is unknown. The crystal structure of the propeller domain of RPGR shows the location of patient mutations and how they perturb the structure. The RPGR·PDEδ complex structure shows PDEδ on a highly conserved surface patch of RPGR. Biochemical experiments and structural considerations show that RPGR can bind with high affinity to cargo‐loaded PDEδ and exposes the Arl2/Arl3‐binding site on PDEδ. On the basis of these results, we propose a model where RPGR is acting as a scaffold protein recruiting cargo‐loaded PDEδ and Arl3 to release lipidated cargo into cilia. The structure of the Retinitis Pigmentosa disease protein RPGR in complex with PDEd explains the features of RPGR patient mutations and suggests a function in ciliary transport in photoreceptor cells.</description><subject>ADP-Ribosylation Factors - chemistry</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Arl2/Arl3</subject><subject>Binding Sites</subject><subject>Cilia - physiology</subject><subject>ciliary trafficking</subject><subject>Conserved Sequence</subject><subject>Crystallography, X-Ray</subject><subject>Cyclic Nucleotide Phosphodiesterases, Type 6 - chemistry</subject><subject>EMBO20</subject><subject>EMBO24</subject><subject>Eye Proteins - chemistry</subject><subject>Eye Proteins - genetics</subject><subject>GTP-Binding Proteins - chemistry</subject><subject>Humans</subject><subject>Lipid Metabolism</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Mutation, Missense</subject><subject>PDEδ</subject><subject>Protein Binding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Prenylation</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Secondary</subject><subject>Protein Transport</subject><subject>retinitis pigmentosa</subject><subject>RPGR</subject><subject>Scientific Report</subject><subject>Scientific Reports</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc2O0zAUhSMEYn5gyRZ5yYJ0bN84TjZIw1AKUoGqGgRiYzn2TcZD6hQ7naHvxXPwTCTTUsECVr7SPee7Rz5J8oTRCaNQnOGq6sKEUwYTkPeSY5blZQpMFvf3M-fs81FyEuM1pVSUsniYHHEQoqS5PE705RUS53sM61ZvSYX9LaIny8Vs-ZwsXk1__iDaW3IeWn4GJGCzaXWPpB9cxrVOhy3pdWiwd74hXU1qHTzG7SiyxAyb7lHyoNZtxMf79zT5-Hp6efEmnX-Yvb04n6dGMCpTDnWdlRZzKzATtsJaVtaCBYBMF5UVLK91qTNZCcOxKJnBHLQ0NAdqCgZwmrzYcdebaoXWoO-DbtU6uNWQUnXaqb833l2pprtRkGccpBwAz_aA0H3bYOzVykWDbas9dpuoGGRFVsqMi0Ga7qQmdDEGrA9nGFVjLequFjXWomBEP_0z20H9u4dBIHaCW9fi9v80NX33cjnOd-DJzhcHi28wqOtuE_zwz_9Msk_uYo_fD4d0-KqGGFKoT-9narbgMC8WS_UFfgGLXLrT</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Wätzlich, Denise</creator><creator>Vetter, Ingrid</creator><creator>Gotthardt, Katja</creator><creator>Miertzschke, Mandy</creator><creator>Chen, Yong-Xiang</creator><creator>Wittinghofer, Alfred</creator><creator>Ismail, Shehab</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201305</creationdate><title>The interplay between RPGR, PDEδ and Arl2/3 regulate the ciliary targeting of farnesylated cargo</title><author>Wätzlich, Denise ; Vetter, Ingrid ; Gotthardt, Katja ; Miertzschke, Mandy ; Chen, Yong-Xiang ; Wittinghofer, Alfred ; Ismail, Shehab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5107-23ff49de6d5e45dbef7bdd3d3334a8bd516fa9a47b5c2e891ce63a7c0630c8133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ADP-Ribosylation Factors - chemistry</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Arl2/Arl3</topic><topic>Binding Sites</topic><topic>Cilia - physiology</topic><topic>ciliary trafficking</topic><topic>Conserved Sequence</topic><topic>Crystallography, X-Ray</topic><topic>Cyclic Nucleotide Phosphodiesterases, Type 6 - chemistry</topic><topic>EMBO20</topic><topic>EMBO24</topic><topic>Eye Proteins - chemistry</topic><topic>Eye Proteins - genetics</topic><topic>GTP-Binding Proteins - chemistry</topic><topic>Humans</topic><topic>Lipid Metabolism</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Mutation, Missense</topic><topic>PDEδ</topic><topic>Protein Binding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Prenylation</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Secondary</topic><topic>Protein Transport</topic><topic>retinitis pigmentosa</topic><topic>RPGR</topic><topic>Scientific Report</topic><topic>Scientific Reports</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wätzlich, Denise</creatorcontrib><creatorcontrib>Vetter, Ingrid</creatorcontrib><creatorcontrib>Gotthardt, Katja</creatorcontrib><creatorcontrib>Miertzschke, Mandy</creatorcontrib><creatorcontrib>Chen, Yong-Xiang</creatorcontrib><creatorcontrib>Wittinghofer, Alfred</creatorcontrib><creatorcontrib>Ismail, Shehab</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wätzlich, Denise</au><au>Vetter, Ingrid</au><au>Gotthardt, Katja</au><au>Miertzschke, Mandy</au><au>Chen, Yong-Xiang</au><au>Wittinghofer, Alfred</au><au>Ismail, Shehab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The interplay between RPGR, PDEδ and Arl2/3 regulate the ciliary targeting of farnesylated cargo</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2013-05</date><risdate>2013</risdate><volume>14</volume><issue>5</issue><spage>465</spage><epage>472</epage><pages>465-472</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Defects in primary cilia result in human diseases known as ciliopathies. The retinitis pigmentosa GTPase regulator (RPGR), mutated in the most severe form of the eye disease, is located at the transition zone of the ciliary organelle. The RPGR‐interacting partner PDEδ is involved in trafficking of farnesylated ciliary cargo, but the significance of this interaction is unknown. The crystal structure of the propeller domain of RPGR shows the location of patient mutations and how they perturb the structure. The RPGR·PDEδ complex structure shows PDEδ on a highly conserved surface patch of RPGR. Biochemical experiments and structural considerations show that RPGR can bind with high affinity to cargo‐loaded PDEδ and exposes the Arl2/Arl3‐binding site on PDEδ. On the basis of these results, we propose a model where RPGR is acting as a scaffold protein recruiting cargo‐loaded PDEδ and Arl3 to release lipidated cargo into cilia. The structure of the Retinitis Pigmentosa disease protein RPGR in complex with PDEd explains the features of RPGR patient mutations and suggests a function in ciliary transport in photoreceptor cells.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>23559067</pmid><doi>10.1038/embor.2013.37</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2013-05, Vol.14 (5), p.465-472
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3642377
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; PubMed Central
subjects ADP-Ribosylation Factors - chemistry
Amino Acid Sequence
Animals
Arl2/Arl3
Binding Sites
Cilia - physiology
ciliary trafficking
Conserved Sequence
Crystallography, X-Ray
Cyclic Nucleotide Phosphodiesterases, Type 6 - chemistry
EMBO20
EMBO24
Eye Proteins - chemistry
Eye Proteins - genetics
GTP-Binding Proteins - chemistry
Humans
Lipid Metabolism
Mice
Models, Molecular
Mutation, Missense
PDEδ
Protein Binding
Protein Interaction Domains and Motifs
Protein Prenylation
Protein Structure, Quaternary
Protein Structure, Secondary
Protein Transport
retinitis pigmentosa
RPGR
Scientific Report
Scientific Reports
title The interplay between RPGR, PDEδ and Arl2/3 regulate the ciliary targeting of farnesylated cargo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20interplay%20between%20RPGR,%20PDE%CE%B4%20and%20Arl2/3%20regulate%20the%20ciliary%20targeting%20of%20farnesylated%20cargo&rft.jtitle=EMBO%20reports&rft.au=W%C3%A4tzlich,%20Denise&rft.date=2013-05&rft.volume=14&rft.issue=5&rft.spage=465&rft.epage=472&rft.pages=465-472&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.1038/embor.2013.37&rft_dat=%3Cproquest_pubme%3E1348497425%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348497425&rft_id=info:pmid/23559067&rfr_iscdi=true