Climate change, wine, and conservation
Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have recei...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-04, Vol.110 (17), p.6907-6912 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6912 |
---|---|
container_issue | 17 |
container_start_page | 6907 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Hannah, Lee Roehrdanz, Patrick R. Ikegami, Makihiko Shepard, Anderson V. Shaw, M. Rebecca Tabor, Gary Zhi, Lu Marquet, Pablo A. Hijmans, Robert J. |
description | Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects. |
doi_str_mv | 10.1073/pnas.1210127110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3637704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42590537</jstor_id><sourcerecordid>42590537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-5f7fc2130e6c618b19385c710babcb1fdffcf3e57962d5bfc06493bdd19903b93</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS0EoiHtuadCJATiwLYz9tpeX5BQVD6kSr20Z8vrtduNNnawN0X893iVNC1c7IN_894bP0JOEc4RJLvYBJPPkSIglYjwgswQFFaiVvCSzACorJqa1kfkTc4rAFC8gdfkiDIuFGU4Ix-XQ782o1vYexPu3OfF7z6U04RuYWPILj2YsY_hmLzyZsjuZH_Pye23y5vlj-rq-vvP5derynIlxop76S1FBk5YgU2LijXcSoTWtLZF33lvPXNcKkE73noLJSlruw6VAtYqNidfdrqbbbt2nXVhTGbQm1RCpj86ml7_-xL6e30XHzQTTEqoi8CnvUCKv7Yuj3rdZ-uGwQQXt1ljA6zkaygU9P1_6CpuUyjraWS1kMhpPSW62FE2xZyT84cwCHrqQE8d6KcOysTb5zsc-MdPL8CHPWCyNYNPJtg-P3GScmiAF-7dnpscDraTr9RCFe85OdsRqzzGdEBqylWZl-wvPQ6h0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346715249</pqid></control><display><type>article</type><title>Climate change, wine, and conservation</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hannah, Lee ; Roehrdanz, Patrick R. ; Ikegami, Makihiko ; Shepard, Anderson V. ; Shaw, M. Rebecca ; Tabor, Gary ; Zhi, Lu ; Marquet, Pablo A. ; Hijmans, Robert J.</creator><creatorcontrib>Hannah, Lee ; Roehrdanz, Patrick R. ; Ikegami, Makihiko ; Shepard, Anderson V. ; Shaw, M. Rebecca ; Tabor, Gary ; Zhi, Lu ; Marquet, Pablo A. ; Hijmans, Robert J.</creatorcontrib><description>Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1210127110</identifier><identifier>PMID: 23569231</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences</publisher><subject>Agricultural production ; Agriculture - statistics & numerical data ; Animal and plant ecology ; Animal, plant and microbial ecology ; Aquatic ecosystems ; biodiversity ; Biodiversity conservation ; Biological and medical sciences ; Biological Sciences ; Climate Change ; Climate change adaptation ; Climate models ; Climatology. Bioclimatology. Climate change ; Conservation ; Conservation of Natural Resources - methods ; Earth, ocean, space ; Ecosystem ; Environmental conservation ; Environmental impact ; Exact sciences and technology ; External geophysics ; Fermented food industries ; Food industries ; Fresh Water - analysis ; freshwater ; freshwater ecosystems ; Fundamental and applied biological sciences. Psychology ; General aspects ; Global climate models ; grapes ; Habitat conservation ; habitat destruction ; highlands ; humans ; irrigation ; Land use ; latitude ; Mediterranean climate ; Mediterranean Region ; Meteorology ; Models, Biological ; North America ; Synecology ; vegetation ; Vineyards ; Viticulture ; Vitis - growth & development ; Wine - statistics & numerical data ; Wines ; Wines and vinegars</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (17), p.6907-6912</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>2014 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Apr 23, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-5f7fc2130e6c618b19385c710babcb1fdffcf3e57962d5bfc06493bdd19903b93</citedby><cites>FETCH-LOGICAL-c596t-5f7fc2130e6c618b19385c710babcb1fdffcf3e57962d5bfc06493bdd19903b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42590537$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42590537$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27250805$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23569231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hannah, Lee</creatorcontrib><creatorcontrib>Roehrdanz, Patrick R.</creatorcontrib><creatorcontrib>Ikegami, Makihiko</creatorcontrib><creatorcontrib>Shepard, Anderson V.</creatorcontrib><creatorcontrib>Shaw, M. Rebecca</creatorcontrib><creatorcontrib>Tabor, Gary</creatorcontrib><creatorcontrib>Zhi, Lu</creatorcontrib><creatorcontrib>Marquet, Pablo A.</creatorcontrib><creatorcontrib>Hijmans, Robert J.</creatorcontrib><title>Climate change, wine, and conservation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects.</description><subject>Agricultural production</subject><subject>Agriculture - statistics & numerical data</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Aquatic ecosystems</subject><subject>biodiversity</subject><subject>Biodiversity conservation</subject><subject>Biological and medical sciences</subject><subject>Biological Sciences</subject><subject>Climate Change</subject><subject>Climate change adaptation</subject><subject>Climate models</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Conservation</subject><subject>Conservation of Natural Resources - methods</subject><subject>Earth, ocean, space</subject><subject>Ecosystem</subject><subject>Environmental conservation</subject><subject>Environmental impact</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fermented food industries</subject><subject>Food industries</subject><subject>Fresh Water - analysis</subject><subject>freshwater</subject><subject>freshwater ecosystems</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Global climate models</subject><subject>grapes</subject><subject>Habitat conservation</subject><subject>habitat destruction</subject><subject>highlands</subject><subject>humans</subject><subject>irrigation</subject><subject>Land use</subject><subject>latitude</subject><subject>Mediterranean climate</subject><subject>Mediterranean Region</subject><subject>Meteorology</subject><subject>Models, Biological</subject><subject>North America</subject><subject>Synecology</subject><subject>vegetation</subject><subject>Vineyards</subject><subject>Viticulture</subject><subject>Vitis - growth & development</subject><subject>Wine - statistics & numerical data</subject><subject>Wines</subject><subject>Wines and vinegars</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS0EoiHtuadCJATiwLYz9tpeX5BQVD6kSr20Z8vrtduNNnawN0X893iVNC1c7IN_894bP0JOEc4RJLvYBJPPkSIglYjwgswQFFaiVvCSzACorJqa1kfkTc4rAFC8gdfkiDIuFGU4Ix-XQ782o1vYexPu3OfF7z6U04RuYWPILj2YsY_hmLzyZsjuZH_Pye23y5vlj-rq-vvP5derynIlxop76S1FBk5YgU2LijXcSoTWtLZF33lvPXNcKkE73noLJSlruw6VAtYqNidfdrqbbbt2nXVhTGbQm1RCpj86ml7_-xL6e30XHzQTTEqoi8CnvUCKv7Yuj3rdZ-uGwQQXt1ljA6zkaygU9P1_6CpuUyjraWS1kMhpPSW62FE2xZyT84cwCHrqQE8d6KcOysTb5zsc-MdPL8CHPWCyNYNPJtg-P3GScmiAF-7dnpscDraTr9RCFe85OdsRqzzGdEBqylWZl-wvPQ6h0g</recordid><startdate>20130423</startdate><enddate>20130423</enddate><creator>Hannah, Lee</creator><creator>Roehrdanz, Patrick R.</creator><creator>Ikegami, Makihiko</creator><creator>Shepard, Anderson V.</creator><creator>Shaw, M. Rebecca</creator><creator>Tabor, Gary</creator><creator>Zhi, Lu</creator><creator>Marquet, Pablo A.</creator><creator>Hijmans, Robert J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130423</creationdate><title>Climate change, wine, and conservation</title><author>Hannah, Lee ; Roehrdanz, Patrick R. ; Ikegami, Makihiko ; Shepard, Anderson V. ; Shaw, M. Rebecca ; Tabor, Gary ; Zhi, Lu ; Marquet, Pablo A. ; Hijmans, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-5f7fc2130e6c618b19385c710babcb1fdffcf3e57962d5bfc06493bdd19903b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agricultural production</topic><topic>Agriculture - statistics & numerical data</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Aquatic ecosystems</topic><topic>biodiversity</topic><topic>Biodiversity conservation</topic><topic>Biological and medical sciences</topic><topic>Biological Sciences</topic><topic>Climate Change</topic><topic>Climate change adaptation</topic><topic>Climate models</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Conservation</topic><topic>Conservation of Natural Resources - methods</topic><topic>Earth, ocean, space</topic><topic>Ecosystem</topic><topic>Environmental conservation</topic><topic>Environmental impact</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fermented food industries</topic><topic>Food industries</topic><topic>Fresh Water - analysis</topic><topic>freshwater</topic><topic>freshwater ecosystems</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Global climate models</topic><topic>grapes</topic><topic>Habitat conservation</topic><topic>habitat destruction</topic><topic>highlands</topic><topic>humans</topic><topic>irrigation</topic><topic>Land use</topic><topic>latitude</topic><topic>Mediterranean climate</topic><topic>Mediterranean Region</topic><topic>Meteorology</topic><topic>Models, Biological</topic><topic>North America</topic><topic>Synecology</topic><topic>vegetation</topic><topic>Vineyards</topic><topic>Viticulture</topic><topic>Vitis - growth & development</topic><topic>Wine - statistics & numerical data</topic><topic>Wines</topic><topic>Wines and vinegars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hannah, Lee</creatorcontrib><creatorcontrib>Roehrdanz, Patrick R.</creatorcontrib><creatorcontrib>Ikegami, Makihiko</creatorcontrib><creatorcontrib>Shepard, Anderson V.</creatorcontrib><creatorcontrib>Shaw, M. Rebecca</creatorcontrib><creatorcontrib>Tabor, Gary</creatorcontrib><creatorcontrib>Zhi, Lu</creatorcontrib><creatorcontrib>Marquet, Pablo A.</creatorcontrib><creatorcontrib>Hijmans, Robert J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hannah, Lee</au><au>Roehrdanz, Patrick R.</au><au>Ikegami, Makihiko</au><au>Shepard, Anderson V.</au><au>Shaw, M. Rebecca</au><au>Tabor, Gary</au><au>Zhi, Lu</au><au>Marquet, Pablo A.</au><au>Hijmans, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climate change, wine, and conservation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-04-23</date><risdate>2013</risdate><volume>110</volume><issue>17</issue><spage>6907</spage><epage>6912</epage><pages>6907-6912</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences</pub><pmid>23569231</pmid><doi>10.1073/pnas.1210127110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (17), p.6907-6912 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3637704 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Agricultural production Agriculture - statistics & numerical data Animal and plant ecology Animal, plant and microbial ecology Aquatic ecosystems biodiversity Biodiversity conservation Biological and medical sciences Biological Sciences Climate Change Climate change adaptation Climate models Climatology. Bioclimatology. Climate change Conservation Conservation of Natural Resources - methods Earth, ocean, space Ecosystem Environmental conservation Environmental impact Exact sciences and technology External geophysics Fermented food industries Food industries Fresh Water - analysis freshwater freshwater ecosystems Fundamental and applied biological sciences. Psychology General aspects Global climate models grapes Habitat conservation habitat destruction highlands humans irrigation Land use latitude Mediterranean climate Mediterranean Region Meteorology Models, Biological North America Synecology vegetation Vineyards Viticulture Vitis - growth & development Wine - statistics & numerical data Wines Wines and vinegars |
title | Climate change, wine, and conservation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climate%20change,%20wine,%20and%20conservation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hannah,%20Lee&rft.date=2013-04-23&rft.volume=110&rft.issue=17&rft.spage=6907&rft.epage=6912&rft.pages=6907-6912&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.1210127110&rft_dat=%3Cjstor_pubme%3E42590537%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346715249&rft_id=info:pmid/23569231&rft_jstor_id=42590537&rfr_iscdi=true |