A computational method for detecting copy number variations using scale-space filtering

As next-generation sequencing technology made rapid and cost-effective sequencing available, the importance of computational approaches in finding and analyzing copy number variations (CNVs) has been amplified. Furthermore, most genome projects need to accurately analyze sequences with fairly low-co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2013-02, Vol.14 (1), p.57-57, Article 57
Hauptverfasser: Lee, Jongkeun, Lee, Unjoo, Kim, Baeksop, Yoon, Jeehee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 1
container_start_page 57
container_title BMC bioinformatics
container_volume 14
creator Lee, Jongkeun
Lee, Unjoo
Kim, Baeksop
Yoon, Jeehee
description As next-generation sequencing technology made rapid and cost-effective sequencing available, the importance of computational approaches in finding and analyzing copy number variations (CNVs) has been amplified. Furthermore, most genome projects need to accurately analyze sequences with fairly low-coverage read data. It is urgently needed to develop a method to detect the exact types and locations of CNVs from low coverage read data. Here, we propose a new CNV detection method, CNV_SS, which uses scale-space filtering. The scale-space filtering is evaluated by applying to the read coverage data the Gaussian convolution for various scales according to a given scaling parameter. Next, by differentiating twice and finding zero-crossing points, inflection points of scale-space filtered read coverage data are calculated per scale. Then, the types and the exact locations of CNVs are obtained by analyzing the finger print map, the contours of zero-crossing points for various scales. The performance of CNV_SS showed that FNR and FPR stay in the range of 1.27% to 2.43% and 1.14% to 2.44%, respectively, even at a relatively low coverage (0.5x ≤C ≤2x). CNV_SS gave also much more effective results than the conventional methods in the evaluation of FNR, at 3.82% at least and 76.97% at most even when the coverage level of read data is low. CNV_SS source code is freely available from http://dblab.hallym.ac.kr/CNV SS/.
doi_str_mv 10.1186/1471-2105-14-57
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3637191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534518233</galeid><sourcerecordid>A534518233</sourcerecordid><originalsourceid>FETCH-LOGICAL-b614t-98c63c9ff48f51a74287c7049f649613f9b5003641e98a2482ea778b03680eac3</originalsourceid><addsrcrecordid>eNqNkstr3DAQxk1padK0596KoZf24ESjhyVfCpvQRyBQ6IMehawdbxRsayvJofnvK3fTbVxSKDpomPnNx_DNFMVzIMcAqj4BLqGiQEQFvBLyQXG4zzy8Ex8UT2K8IgSkIuJxcUAZByVpfVh8W5XWD9spmeT8aPpywHTp12XnQ7nGhDa5cZOR7U05TkOLobw2wf2CYznFuRit6bGKW2Ox7FyfMOTs0-JRZ_qIz27_o-Lru7dfzj5UFx_fn5-tLqq2Bp6qRtma2abruOoEGMmpklYS3nQ1b2pgXdMKQljNARtlKFcUjZSqzSlF0Fh2VLzZ6W6ndsC1xTEF0-ttcIMJN9obp5eV0V3qjb_WrGYSGsgCpzuB1vl_CCwr2S49G6tnY3Okhcwir26nCP77hDHpwUWLfW9G9FPUwASlDQDQ_0B5LaTigmT05V_olZ9CXtKOapikovlDbfIatBs7n8e0s6heCcYFKMpYpo7vofJb4-CsHzFvDpcNrxcNmUn4I23MFKM-__xpyZ7sWBt8jAG7vX1A9Hyn9xj24u7a9vzvw2Q_AXYT4E8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346937259</pqid></control><display><type>article</type><title>A computational method for detecting copy number variations using scale-space filtering</title><source>MEDLINE</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>SpringerLink Journals - AutoHoldings</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Lee, Jongkeun ; Lee, Unjoo ; Kim, Baeksop ; Yoon, Jeehee</creator><creatorcontrib>Lee, Jongkeun ; Lee, Unjoo ; Kim, Baeksop ; Yoon, Jeehee</creatorcontrib><description>As next-generation sequencing technology made rapid and cost-effective sequencing available, the importance of computational approaches in finding and analyzing copy number variations (CNVs) has been amplified. Furthermore, most genome projects need to accurately analyze sequences with fairly low-coverage read data. It is urgently needed to develop a method to detect the exact types and locations of CNVs from low coverage read data. Here, we propose a new CNV detection method, CNV_SS, which uses scale-space filtering. The scale-space filtering is evaluated by applying to the read coverage data the Gaussian convolution for various scales according to a given scaling parameter. Next, by differentiating twice and finding zero-crossing points, inflection points of scale-space filtered read coverage data are calculated per scale. Then, the types and the exact locations of CNVs are obtained by analyzing the finger print map, the contours of zero-crossing points for various scales. The performance of CNV_SS showed that FNR and FPR stay in the range of 1.27% to 2.43% and 1.14% to 2.44%, respectively, even at a relatively low coverage (0.5x ≤C ≤2x). CNV_SS gave also much more effective results than the conventional methods in the evaluation of FNR, at 3.82% at least and 76.97% at most even when the coverage level of read data is low. CNV_SS source code is freely available from http://dblab.hallym.ac.kr/CNV SS/.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-14-57</identifier><identifier>PMID: 23418726</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Analysis ; Computational Biology - methods ; Copy number variations ; Disease ; DNA Copy Number Variations ; DNA sequencing ; Experiments ; Filters (Mathematics) ; Genetic disorders ; Genetic research ; Genome ; Genomes ; Genomics ; HapMap Project ; Humans ; Methods ; Noise ; Nucleotide sequencing ; Sequence Analysis, DNA - methods ; Studies</subject><ispartof>BMC bioinformatics, 2013-02, Vol.14 (1), p.57-57, Article 57</ispartof><rights>COPYRIGHT 2013 BioMed Central Ltd.</rights><rights>2013 Lee et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2013 Lee et al.; licensee BioMed Central Ltd. 2013 Lee et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b614t-98c63c9ff48f51a74287c7049f649613f9b5003641e98a2482ea778b03680eac3</citedby><cites>FETCH-LOGICAL-b614t-98c63c9ff48f51a74287c7049f649613f9b5003641e98a2482ea778b03680eac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637191/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637191/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23418726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jongkeun</creatorcontrib><creatorcontrib>Lee, Unjoo</creatorcontrib><creatorcontrib>Kim, Baeksop</creatorcontrib><creatorcontrib>Yoon, Jeehee</creatorcontrib><title>A computational method for detecting copy number variations using scale-space filtering</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>As next-generation sequencing technology made rapid and cost-effective sequencing available, the importance of computational approaches in finding and analyzing copy number variations (CNVs) has been amplified. Furthermore, most genome projects need to accurately analyze sequences with fairly low-coverage read data. It is urgently needed to develop a method to detect the exact types and locations of CNVs from low coverage read data. Here, we propose a new CNV detection method, CNV_SS, which uses scale-space filtering. The scale-space filtering is evaluated by applying to the read coverage data the Gaussian convolution for various scales according to a given scaling parameter. Next, by differentiating twice and finding zero-crossing points, inflection points of scale-space filtered read coverage data are calculated per scale. Then, the types and the exact locations of CNVs are obtained by analyzing the finger print map, the contours of zero-crossing points for various scales. The performance of CNV_SS showed that FNR and FPR stay in the range of 1.27% to 2.43% and 1.14% to 2.44%, respectively, even at a relatively low coverage (0.5x ≤C ≤2x). CNV_SS gave also much more effective results than the conventional methods in the evaluation of FNR, at 3.82% at least and 76.97% at most even when the coverage level of read data is low. CNV_SS source code is freely available from http://dblab.hallym.ac.kr/CNV SS/.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Computational Biology - methods</subject><subject>Copy number variations</subject><subject>Disease</subject><subject>DNA Copy Number Variations</subject><subject>DNA sequencing</subject><subject>Experiments</subject><subject>Filters (Mathematics)</subject><subject>Genetic disorders</subject><subject>Genetic research</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>HapMap Project</subject><subject>Humans</subject><subject>Methods</subject><subject>Noise</subject><subject>Nucleotide sequencing</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Studies</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkstr3DAQxk1padK0596KoZf24ESjhyVfCpvQRyBQ6IMehawdbxRsayvJofnvK3fTbVxSKDpomPnNx_DNFMVzIMcAqj4BLqGiQEQFvBLyQXG4zzy8Ex8UT2K8IgSkIuJxcUAZByVpfVh8W5XWD9spmeT8aPpywHTp12XnQ7nGhDa5cZOR7U05TkOLobw2wf2CYznFuRit6bGKW2Ox7FyfMOTs0-JRZ_qIz27_o-Lru7dfzj5UFx_fn5-tLqq2Bp6qRtma2abruOoEGMmpklYS3nQ1b2pgXdMKQljNARtlKFcUjZSqzSlF0Fh2VLzZ6W6ndsC1xTEF0-ttcIMJN9obp5eV0V3qjb_WrGYSGsgCpzuB1vl_CCwr2S49G6tnY3Okhcwir26nCP77hDHpwUWLfW9G9FPUwASlDQDQ_0B5LaTigmT05V_olZ9CXtKOapikovlDbfIatBs7n8e0s6heCcYFKMpYpo7vofJb4-CsHzFvDpcNrxcNmUn4I23MFKM-__xpyZ7sWBt8jAG7vX1A9Hyn9xj24u7a9vzvw2Q_AXYT4E8</recordid><startdate>20130218</startdate><enddate>20130218</enddate><creator>Lee, Jongkeun</creator><creator>Lee, Unjoo</creator><creator>Kim, Baeksop</creator><creator>Yoon, Jeehee</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130218</creationdate><title>A computational method for detecting copy number variations using scale-space filtering</title><author>Lee, Jongkeun ; Lee, Unjoo ; Kim, Baeksop ; Yoon, Jeehee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b614t-98c63c9ff48f51a74287c7049f649613f9b5003641e98a2482ea778b03680eac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Computational Biology - methods</topic><topic>Copy number variations</topic><topic>Disease</topic><topic>DNA Copy Number Variations</topic><topic>DNA sequencing</topic><topic>Experiments</topic><topic>Filters (Mathematics)</topic><topic>Genetic disorders</topic><topic>Genetic research</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>HapMap Project</topic><topic>Humans</topic><topic>Methods</topic><topic>Noise</topic><topic>Nucleotide sequencing</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jongkeun</creatorcontrib><creatorcontrib>Lee, Unjoo</creatorcontrib><creatorcontrib>Kim, Baeksop</creatorcontrib><creatorcontrib>Yoon, Jeehee</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jongkeun</au><au>Lee, Unjoo</au><au>Kim, Baeksop</au><au>Yoon, Jeehee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational method for detecting copy number variations using scale-space filtering</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2013-02-18</date><risdate>2013</risdate><volume>14</volume><issue>1</issue><spage>57</spage><epage>57</epage><pages>57-57</pages><artnum>57</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>As next-generation sequencing technology made rapid and cost-effective sequencing available, the importance of computational approaches in finding and analyzing copy number variations (CNVs) has been amplified. Furthermore, most genome projects need to accurately analyze sequences with fairly low-coverage read data. It is urgently needed to develop a method to detect the exact types and locations of CNVs from low coverage read data. Here, we propose a new CNV detection method, CNV_SS, which uses scale-space filtering. The scale-space filtering is evaluated by applying to the read coverage data the Gaussian convolution for various scales according to a given scaling parameter. Next, by differentiating twice and finding zero-crossing points, inflection points of scale-space filtered read coverage data are calculated per scale. Then, the types and the exact locations of CNVs are obtained by analyzing the finger print map, the contours of zero-crossing points for various scales. The performance of CNV_SS showed that FNR and FPR stay in the range of 1.27% to 2.43% and 1.14% to 2.44%, respectively, even at a relatively low coverage (0.5x ≤C ≤2x). CNV_SS gave also much more effective results than the conventional methods in the evaluation of FNR, at 3.82% at least and 76.97% at most even when the coverage level of read data is low. CNV_SS source code is freely available from http://dblab.hallym.ac.kr/CNV SS/.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>23418726</pmid><doi>10.1186/1471-2105-14-57</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2013-02, Vol.14 (1), p.57-57, Article 57
issn 1471-2105
1471-2105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3637191
source MEDLINE; PubMed Central; Directory of Open Access Journals; EZB Electronic Journals Library; SpringerLink Journals - AutoHoldings; PubMed Central Open Access; Springer Nature OA Free Journals
subjects Algorithms
Analysis
Computational Biology - methods
Copy number variations
Disease
DNA Copy Number Variations
DNA sequencing
Experiments
Filters (Mathematics)
Genetic disorders
Genetic research
Genome
Genomes
Genomics
HapMap Project
Humans
Methods
Noise
Nucleotide sequencing
Sequence Analysis, DNA - methods
Studies
title A computational method for detecting copy number variations using scale-space filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20method%20for%20detecting%20copy%20number%20variations%20using%20scale-space%20filtering&rft.jtitle=BMC%20bioinformatics&rft.au=Lee,%20Jongkeun&rft.date=2013-02-18&rft.volume=14&rft.issue=1&rft.spage=57&rft.epage=57&rft.pages=57-57&rft.artnum=57&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-14-57&rft_dat=%3Cgale_pubme%3EA534518233%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346937259&rft_id=info:pmid/23418726&rft_galeid=A534518233&rfr_iscdi=true