Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36
Gap junction (GJ) channels composed of Connexin36 (Cx36) are widely expressed in the mammalian CNS and form electrical synapses between neurons. Here we describe a novel modulatory mechanism of Cx36 GJ channels dependent on intracellular free magnesium ([Mg(2+)]i). We examined junctional conductance...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2013-03, Vol.33 (11), p.4741-4753 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4753 |
---|---|
container_issue | 11 |
container_start_page | 4741 |
container_title | The Journal of neuroscience |
container_volume | 33 |
creator | Palacios-Prado, Nicolás Hoge, Gregory Marandykina, Alina Rimkute, Lina Chapuis, Sandrine Paulauskas, Nerijus Skeberdis, Vytenis A O'Brien, John Pereda, Alberto E Bennett, Michael V L Bukauskas, Feliksas F |
description | Gap junction (GJ) channels composed of Connexin36 (Cx36) are widely expressed in the mammalian CNS and form electrical synapses between neurons. Here we describe a novel modulatory mechanism of Cx36 GJ channels dependent on intracellular free magnesium ([Mg(2+)]i). We examined junctional conductance (gj) and its dependence on transjunctional voltage (Vj) at different [Mg(2+)]i in cultures of HeLa or N2A cells expressing Cx36. We found that Cx36 GJs are partially inhibited at resting [Mg(2+)]i. Thus, gj can be augmented or reduced by lowering or increasing [Mg(2+)]i, respectively. Similar changes in gj and Vj-gating were observed using MgATP or K2ATP in pipette solutions, which increases or decreases [Mg(2+)]i, respectively. Changes in phosphorylation of Cx36 or in intracellular free calcium concentration were not involved in the observed Mg(2+)-dependent modulation of gj. Magnesium ions permeate the channel and transjunctional asymmetry in [Mg(2+)]i resulted in asymmetric Vj-gating. The gj of GJs formed of Cx26, Cx32, Cx43, Cx45, and Cx47 was also reduced by increasing [Mg(2+)]i, but was not increased by lowering [Mg(2+)]i; single-channel conductance did not change. We showed that [Mg(2+)]i affects both open probability and the number of functional channels, likely through binding in the channel lumen. Finally, we showed that Cx36-containing electrical synapses between neurons of the trigeminal mesencephalic nucleus in rat brain slices are similarly affected by changes in [Mg(2+)]i. Thus, this novel modulatory mechanism could underlie changes in neuronal synchronization under conditions in which ATP levels, and consequently [Mg(2+)]i, are modified. |
doi_str_mv | 10.1523/JNEUROSCI.2825-12.2013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3635812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551615726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-57f2a32c2607d36a85df910daa3a2060382d2b2e17b94a91dce6497bbe5bdb9d3</originalsourceid><addsrcrecordid>eNpVkV1r2zAUhsXoWLJuf6HosjfOpCNLsm8GJaRtRllgW66FLMmJgy2lkl2af1-77cJ2dTi857zn40HoipIF5cC-_fi52v7a_F6uF1AAzygsgFD2Ac1HtcwgJ_QCzQlIkolc5jP0OaUDIUQSKj-hGbC8EGUu5sisfR-1cW07tDriTu-8S83QZdYdnbfO97gLdtT6JngcarzTR3wYvHnNzV5779qE6xA7Z3F1wt4NMXjdYhNG6bnxTHxBH2vdJvf1PV6i7e3qz_I-e9jcrZc3D5nhQvQZlzVoBgYEkZYJXXBbl5RYrZkGIggrwEIFjsqqzHVJrXEiL2VVOV7ZqrTsEn1_8z0O1biNcdNprTrGptPxpIJu1P-Kb_ZqF54UE4wXFEaD63eDGB4Hl3rVNWn6jfYuDElRzqmgXIIYS8VbqYkhpejq8xhK1ERInQmpiZCioCZCY-PVv0ue2_4iYS_0HpD6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551615726</pqid></control><display><type>article</type><title>Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36</title><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Palacios-Prado, Nicolás ; Hoge, Gregory ; Marandykina, Alina ; Rimkute, Lina ; Chapuis, Sandrine ; Paulauskas, Nerijus ; Skeberdis, Vytenis A ; O'Brien, John ; Pereda, Alberto E ; Bennett, Michael V L ; Bukauskas, Feliksas F</creator><creatorcontrib>Palacios-Prado, Nicolás ; Hoge, Gregory ; Marandykina, Alina ; Rimkute, Lina ; Chapuis, Sandrine ; Paulauskas, Nerijus ; Skeberdis, Vytenis A ; O'Brien, John ; Pereda, Alberto E ; Bennett, Michael V L ; Bukauskas, Feliksas F</creatorcontrib><description>Gap junction (GJ) channels composed of Connexin36 (Cx36) are widely expressed in the mammalian CNS and form electrical synapses between neurons. Here we describe a novel modulatory mechanism of Cx36 GJ channels dependent on intracellular free magnesium ([Mg(2+)]i). We examined junctional conductance (gj) and its dependence on transjunctional voltage (Vj) at different [Mg(2+)]i in cultures of HeLa or N2A cells expressing Cx36. We found that Cx36 GJs are partially inhibited at resting [Mg(2+)]i. Thus, gj can be augmented or reduced by lowering or increasing [Mg(2+)]i, respectively. Similar changes in gj and Vj-gating were observed using MgATP or K2ATP in pipette solutions, which increases or decreases [Mg(2+)]i, respectively. Changes in phosphorylation of Cx36 or in intracellular free calcium concentration were not involved in the observed Mg(2+)-dependent modulation of gj. Magnesium ions permeate the channel and transjunctional asymmetry in [Mg(2+)]i resulted in asymmetric Vj-gating. The gj of GJs formed of Cx26, Cx32, Cx43, Cx45, and Cx47 was also reduced by increasing [Mg(2+)]i, but was not increased by lowering [Mg(2+)]i; single-channel conductance did not change. We showed that [Mg(2+)]i affects both open probability and the number of functional channels, likely through binding in the channel lumen. Finally, we showed that Cx36-containing electrical synapses between neurons of the trigeminal mesencephalic nucleus in rat brain slices are similarly affected by changes in [Mg(2+)]i. Thus, this novel modulatory mechanism could underlie changes in neuronal synchronization under conditions in which ATP levels, and consequently [Mg(2+)]i, are modified.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2825-12.2013</identifier><identifier>PMID: 23486946</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Animals, Newborn ; Biophysical Phenomena - drug effects ; Biophysical Phenomena - physiology ; Cations, Divalent - metabolism ; Cell Line, Tumor ; Chelating Agents - pharmacology ; Connexin 26 ; Connexins - genetics ; Connexins - physiology ; Dose-Response Relationship, Drug ; Egtazic Acid - analogs & derivatives ; Egtazic Acid - pharmacology ; Female ; Gap Junction delta-2 Protein ; Gap Junctions - drug effects ; Gap Junctions - physiology ; Green Fluorescent Proteins - genetics ; Humans ; In Vitro Techniques ; Intracellular Fluid - metabolism ; Ion Channel Gating - drug effects ; Ion Channel Gating - physiology ; Magnesium - metabolism ; Magnesium - pharmacology ; Male ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Mice ; Neurons - cytology ; Neurons - metabolism ; Patch-Clamp Techniques ; Phosphorylation ; Rats ; Rats, Sprague-Dawley ; Tegmentum Mesencephali - cytology ; Transfection</subject><ispartof>The Journal of neuroscience, 2013-03, Vol.33 (11), p.4741-4753</ispartof><rights>Copyright © 2013 the authors 0270-6474/13/334741-13$15.00/0 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-57f2a32c2607d36a85df910daa3a2060382d2b2e17b94a91dce6497bbe5bdb9d3</citedby><cites>FETCH-LOGICAL-c566t-57f2a32c2607d36a85df910daa3a2060382d2b2e17b94a91dce6497bbe5bdb9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635812/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635812/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23486946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palacios-Prado, Nicolás</creatorcontrib><creatorcontrib>Hoge, Gregory</creatorcontrib><creatorcontrib>Marandykina, Alina</creatorcontrib><creatorcontrib>Rimkute, Lina</creatorcontrib><creatorcontrib>Chapuis, Sandrine</creatorcontrib><creatorcontrib>Paulauskas, Nerijus</creatorcontrib><creatorcontrib>Skeberdis, Vytenis A</creatorcontrib><creatorcontrib>O'Brien, John</creatorcontrib><creatorcontrib>Pereda, Alberto E</creatorcontrib><creatorcontrib>Bennett, Michael V L</creatorcontrib><creatorcontrib>Bukauskas, Feliksas F</creatorcontrib><title>Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Gap junction (GJ) channels composed of Connexin36 (Cx36) are widely expressed in the mammalian CNS and form electrical synapses between neurons. Here we describe a novel modulatory mechanism of Cx36 GJ channels dependent on intracellular free magnesium ([Mg(2+)]i). We examined junctional conductance (gj) and its dependence on transjunctional voltage (Vj) at different [Mg(2+)]i in cultures of HeLa or N2A cells expressing Cx36. We found that Cx36 GJs are partially inhibited at resting [Mg(2+)]i. Thus, gj can be augmented or reduced by lowering or increasing [Mg(2+)]i, respectively. Similar changes in gj and Vj-gating were observed using MgATP or K2ATP in pipette solutions, which increases or decreases [Mg(2+)]i, respectively. Changes in phosphorylation of Cx36 or in intracellular free calcium concentration were not involved in the observed Mg(2+)-dependent modulation of gj. Magnesium ions permeate the channel and transjunctional asymmetry in [Mg(2+)]i resulted in asymmetric Vj-gating. The gj of GJs formed of Cx26, Cx32, Cx43, Cx45, and Cx47 was also reduced by increasing [Mg(2+)]i, but was not increased by lowering [Mg(2+)]i; single-channel conductance did not change. We showed that [Mg(2+)]i affects both open probability and the number of functional channels, likely through binding in the channel lumen. Finally, we showed that Cx36-containing electrical synapses between neurons of the trigeminal mesencephalic nucleus in rat brain slices are similarly affected by changes in [Mg(2+)]i. Thus, this novel modulatory mechanism could underlie changes in neuronal synchronization under conditions in which ATP levels, and consequently [Mg(2+)]i, are modified.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biophysical Phenomena - drug effects</subject><subject>Biophysical Phenomena - physiology</subject><subject>Cations, Divalent - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Chelating Agents - pharmacology</subject><subject>Connexin 26</subject><subject>Connexins - genetics</subject><subject>Connexins - physiology</subject><subject>Dose-Response Relationship, Drug</subject><subject>Egtazic Acid - analogs & derivatives</subject><subject>Egtazic Acid - pharmacology</subject><subject>Female</subject><subject>Gap Junction delta-2 Protein</subject><subject>Gap Junctions - drug effects</subject><subject>Gap Junctions - physiology</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Intracellular Fluid - metabolism</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion Channel Gating - physiology</subject><subject>Magnesium - metabolism</subject><subject>Magnesium - pharmacology</subject><subject>Male</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Mice</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>Phosphorylation</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Tegmentum Mesencephali - cytology</subject><subject>Transfection</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkV1r2zAUhsXoWLJuf6HosjfOpCNLsm8GJaRtRllgW66FLMmJgy2lkl2af1-77cJ2dTi857zn40HoipIF5cC-_fi52v7a_F6uF1AAzygsgFD2Ac1HtcwgJ_QCzQlIkolc5jP0OaUDIUQSKj-hGbC8EGUu5sisfR-1cW07tDriTu-8S83QZdYdnbfO97gLdtT6JngcarzTR3wYvHnNzV5779qE6xA7Z3F1wt4NMXjdYhNG6bnxTHxBH2vdJvf1PV6i7e3qz_I-e9jcrZc3D5nhQvQZlzVoBgYEkZYJXXBbl5RYrZkGIggrwEIFjsqqzHVJrXEiL2VVOV7ZqrTsEn1_8z0O1biNcdNprTrGptPxpIJu1P-Kb_ZqF54UE4wXFEaD63eDGB4Hl3rVNWn6jfYuDElRzqmgXIIYS8VbqYkhpejq8xhK1ERInQmpiZCioCZCY-PVv0ue2_4iYS_0HpD6</recordid><startdate>20130313</startdate><enddate>20130313</enddate><creator>Palacios-Prado, Nicolás</creator><creator>Hoge, Gregory</creator><creator>Marandykina, Alina</creator><creator>Rimkute, Lina</creator><creator>Chapuis, Sandrine</creator><creator>Paulauskas, Nerijus</creator><creator>Skeberdis, Vytenis A</creator><creator>O'Brien, John</creator><creator>Pereda, Alberto E</creator><creator>Bennett, Michael V L</creator><creator>Bukauskas, Feliksas F</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20130313</creationdate><title>Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36</title><author>Palacios-Prado, Nicolás ; Hoge, Gregory ; Marandykina, Alina ; Rimkute, Lina ; Chapuis, Sandrine ; Paulauskas, Nerijus ; Skeberdis, Vytenis A ; O'Brien, John ; Pereda, Alberto E ; Bennett, Michael V L ; Bukauskas, Feliksas F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-57f2a32c2607d36a85df910daa3a2060382d2b2e17b94a91dce6497bbe5bdb9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biophysical Phenomena - drug effects</topic><topic>Biophysical Phenomena - physiology</topic><topic>Cations, Divalent - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Chelating Agents - pharmacology</topic><topic>Connexin 26</topic><topic>Connexins - genetics</topic><topic>Connexins - physiology</topic><topic>Dose-Response Relationship, Drug</topic><topic>Egtazic Acid - analogs & derivatives</topic><topic>Egtazic Acid - pharmacology</topic><topic>Female</topic><topic>Gap Junction delta-2 Protein</topic><topic>Gap Junctions - drug effects</topic><topic>Gap Junctions - physiology</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Intracellular Fluid - metabolism</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion Channel Gating - physiology</topic><topic>Magnesium - metabolism</topic><topic>Magnesium - pharmacology</topic><topic>Male</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Mice</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>Phosphorylation</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Tegmentum Mesencephali - cytology</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palacios-Prado, Nicolás</creatorcontrib><creatorcontrib>Hoge, Gregory</creatorcontrib><creatorcontrib>Marandykina, Alina</creatorcontrib><creatorcontrib>Rimkute, Lina</creatorcontrib><creatorcontrib>Chapuis, Sandrine</creatorcontrib><creatorcontrib>Paulauskas, Nerijus</creatorcontrib><creatorcontrib>Skeberdis, Vytenis A</creatorcontrib><creatorcontrib>O'Brien, John</creatorcontrib><creatorcontrib>Pereda, Alberto E</creatorcontrib><creatorcontrib>Bennett, Michael V L</creatorcontrib><creatorcontrib>Bukauskas, Feliksas F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palacios-Prado, Nicolás</au><au>Hoge, Gregory</au><au>Marandykina, Alina</au><au>Rimkute, Lina</au><au>Chapuis, Sandrine</au><au>Paulauskas, Nerijus</au><au>Skeberdis, Vytenis A</au><au>O'Brien, John</au><au>Pereda, Alberto E</au><au>Bennett, Michael V L</au><au>Bukauskas, Feliksas F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2013-03-13</date><risdate>2013</risdate><volume>33</volume><issue>11</issue><spage>4741</spage><epage>4753</epage><pages>4741-4753</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Gap junction (GJ) channels composed of Connexin36 (Cx36) are widely expressed in the mammalian CNS and form electrical synapses between neurons. Here we describe a novel modulatory mechanism of Cx36 GJ channels dependent on intracellular free magnesium ([Mg(2+)]i). We examined junctional conductance (gj) and its dependence on transjunctional voltage (Vj) at different [Mg(2+)]i in cultures of HeLa or N2A cells expressing Cx36. We found that Cx36 GJs are partially inhibited at resting [Mg(2+)]i. Thus, gj can be augmented or reduced by lowering or increasing [Mg(2+)]i, respectively. Similar changes in gj and Vj-gating were observed using MgATP or K2ATP in pipette solutions, which increases or decreases [Mg(2+)]i, respectively. Changes in phosphorylation of Cx36 or in intracellular free calcium concentration were not involved in the observed Mg(2+)-dependent modulation of gj. Magnesium ions permeate the channel and transjunctional asymmetry in [Mg(2+)]i resulted in asymmetric Vj-gating. The gj of GJs formed of Cx26, Cx32, Cx43, Cx45, and Cx47 was also reduced by increasing [Mg(2+)]i, but was not increased by lowering [Mg(2+)]i; single-channel conductance did not change. We showed that [Mg(2+)]i affects both open probability and the number of functional channels, likely through binding in the channel lumen. Finally, we showed that Cx36-containing electrical synapses between neurons of the trigeminal mesencephalic nucleus in rat brain slices are similarly affected by changes in [Mg(2+)]i. Thus, this novel modulatory mechanism could underlie changes in neuronal synchronization under conditions in which ATP levels, and consequently [Mg(2+)]i, are modified.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>23486946</pmid><doi>10.1523/JNEUROSCI.2825-12.2013</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2013-03, Vol.33 (11), p.4741-4753 |
issn | 0270-6474 1529-2401 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3635812 |
source | MEDLINE; PubMed Central; EZB Electronic Journals Library |
subjects | Adenosine Triphosphate - metabolism Animals Animals, Newborn Biophysical Phenomena - drug effects Biophysical Phenomena - physiology Cations, Divalent - metabolism Cell Line, Tumor Chelating Agents - pharmacology Connexin 26 Connexins - genetics Connexins - physiology Dose-Response Relationship, Drug Egtazic Acid - analogs & derivatives Egtazic Acid - pharmacology Female Gap Junction delta-2 Protein Gap Junctions - drug effects Gap Junctions - physiology Green Fluorescent Proteins - genetics Humans In Vitro Techniques Intracellular Fluid - metabolism Ion Channel Gating - drug effects Ion Channel Gating - physiology Magnesium - metabolism Magnesium - pharmacology Male Membrane Potentials - drug effects Membrane Potentials - physiology Mice Neurons - cytology Neurons - metabolism Patch-Clamp Techniques Phosphorylation Rats Rats, Sprague-Dawley Tegmentum Mesencephali - cytology Transfection |
title | Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A51%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20magnesium-dependent%20modulation%20of%20gap%20junction%20channels%20formed%20by%20neuronal%20connexin36&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Palacios-Prado,%20Nicol%C3%A1s&rft.date=2013-03-13&rft.volume=33&rft.issue=11&rft.spage=4741&rft.epage=4753&rft.pages=4741-4753&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2825-12.2013&rft_dat=%3Cproquest_pubme%3E1551615726%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551615726&rft_id=info:pmid/23486946&rfr_iscdi=true |