Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36

Gap junction (GJ) channels composed of Connexin36 (Cx36) are widely expressed in the mammalian CNS and form electrical synapses between neurons. Here we describe a novel modulatory mechanism of Cx36 GJ channels dependent on intracellular free magnesium ([Mg(2+)]i). We examined junctional conductance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2013-03, Vol.33 (11), p.4741-4753
Hauptverfasser: Palacios-Prado, Nicolás, Hoge, Gregory, Marandykina, Alina, Rimkute, Lina, Chapuis, Sandrine, Paulauskas, Nerijus, Skeberdis, Vytenis A, O'Brien, John, Pereda, Alberto E, Bennett, Michael V L, Bukauskas, Feliksas F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4753
container_issue 11
container_start_page 4741
container_title The Journal of neuroscience
container_volume 33
creator Palacios-Prado, Nicolás
Hoge, Gregory
Marandykina, Alina
Rimkute, Lina
Chapuis, Sandrine
Paulauskas, Nerijus
Skeberdis, Vytenis A
O'Brien, John
Pereda, Alberto E
Bennett, Michael V L
Bukauskas, Feliksas F
description Gap junction (GJ) channels composed of Connexin36 (Cx36) are widely expressed in the mammalian CNS and form electrical synapses between neurons. Here we describe a novel modulatory mechanism of Cx36 GJ channels dependent on intracellular free magnesium ([Mg(2+)]i). We examined junctional conductance (gj) and its dependence on transjunctional voltage (Vj) at different [Mg(2+)]i in cultures of HeLa or N2A cells expressing Cx36. We found that Cx36 GJs are partially inhibited at resting [Mg(2+)]i. Thus, gj can be augmented or reduced by lowering or increasing [Mg(2+)]i, respectively. Similar changes in gj and Vj-gating were observed using MgATP or K2ATP in pipette solutions, which increases or decreases [Mg(2+)]i, respectively. Changes in phosphorylation of Cx36 or in intracellular free calcium concentration were not involved in the observed Mg(2+)-dependent modulation of gj. Magnesium ions permeate the channel and transjunctional asymmetry in [Mg(2+)]i resulted in asymmetric Vj-gating. The gj of GJs formed of Cx26, Cx32, Cx43, Cx45, and Cx47 was also reduced by increasing [Mg(2+)]i, but was not increased by lowering [Mg(2+)]i; single-channel conductance did not change. We showed that [Mg(2+)]i affects both open probability and the number of functional channels, likely through binding in the channel lumen. Finally, we showed that Cx36-containing electrical synapses between neurons of the trigeminal mesencephalic nucleus in rat brain slices are similarly affected by changes in [Mg(2+)]i. Thus, this novel modulatory mechanism could underlie changes in neuronal synchronization under conditions in which ATP levels, and consequently [Mg(2+)]i, are modified.
doi_str_mv 10.1523/JNEUROSCI.2825-12.2013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3635812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551615726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-57f2a32c2607d36a85df910daa3a2060382d2b2e17b94a91dce6497bbe5bdb9d3</originalsourceid><addsrcrecordid>eNpVkV1r2zAUhsXoWLJuf6HosjfOpCNLsm8GJaRtRllgW66FLMmJgy2lkl2af1-77cJ2dTi857zn40HoipIF5cC-_fi52v7a_F6uF1AAzygsgFD2Ac1HtcwgJ_QCzQlIkolc5jP0OaUDIUQSKj-hGbC8EGUu5sisfR-1cW07tDriTu-8S83QZdYdnbfO97gLdtT6JngcarzTR3wYvHnNzV5779qE6xA7Z3F1wt4NMXjdYhNG6bnxTHxBH2vdJvf1PV6i7e3qz_I-e9jcrZc3D5nhQvQZlzVoBgYEkZYJXXBbl5RYrZkGIggrwEIFjsqqzHVJrXEiL2VVOV7ZqrTsEn1_8z0O1biNcdNprTrGptPxpIJu1P-Kb_ZqF54UE4wXFEaD63eDGB4Hl3rVNWn6jfYuDElRzqmgXIIYS8VbqYkhpejq8xhK1ERInQmpiZCioCZCY-PVv0ue2_4iYS_0HpD6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551615726</pqid></control><display><type>article</type><title>Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36</title><source>MEDLINE</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Palacios-Prado, Nicolás ; Hoge, Gregory ; Marandykina, Alina ; Rimkute, Lina ; Chapuis, Sandrine ; Paulauskas, Nerijus ; Skeberdis, Vytenis A ; O'Brien, John ; Pereda, Alberto E ; Bennett, Michael V L ; Bukauskas, Feliksas F</creator><creatorcontrib>Palacios-Prado, Nicolás ; Hoge, Gregory ; Marandykina, Alina ; Rimkute, Lina ; Chapuis, Sandrine ; Paulauskas, Nerijus ; Skeberdis, Vytenis A ; O'Brien, John ; Pereda, Alberto E ; Bennett, Michael V L ; Bukauskas, Feliksas F</creatorcontrib><description>Gap junction (GJ) channels composed of Connexin36 (Cx36) are widely expressed in the mammalian CNS and form electrical synapses between neurons. Here we describe a novel modulatory mechanism of Cx36 GJ channels dependent on intracellular free magnesium ([Mg(2+)]i). We examined junctional conductance (gj) and its dependence on transjunctional voltage (Vj) at different [Mg(2+)]i in cultures of HeLa or N2A cells expressing Cx36. We found that Cx36 GJs are partially inhibited at resting [Mg(2+)]i. Thus, gj can be augmented or reduced by lowering or increasing [Mg(2+)]i, respectively. Similar changes in gj and Vj-gating were observed using MgATP or K2ATP in pipette solutions, which increases or decreases [Mg(2+)]i, respectively. Changes in phosphorylation of Cx36 or in intracellular free calcium concentration were not involved in the observed Mg(2+)-dependent modulation of gj. Magnesium ions permeate the channel and transjunctional asymmetry in [Mg(2+)]i resulted in asymmetric Vj-gating. The gj of GJs formed of Cx26, Cx32, Cx43, Cx45, and Cx47 was also reduced by increasing [Mg(2+)]i, but was not increased by lowering [Mg(2+)]i; single-channel conductance did not change. We showed that [Mg(2+)]i affects both open probability and the number of functional channels, likely through binding in the channel lumen. Finally, we showed that Cx36-containing electrical synapses between neurons of the trigeminal mesencephalic nucleus in rat brain slices are similarly affected by changes in [Mg(2+)]i. Thus, this novel modulatory mechanism could underlie changes in neuronal synchronization under conditions in which ATP levels, and consequently [Mg(2+)]i, are modified.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2825-12.2013</identifier><identifier>PMID: 23486946</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Animals, Newborn ; Biophysical Phenomena - drug effects ; Biophysical Phenomena - physiology ; Cations, Divalent - metabolism ; Cell Line, Tumor ; Chelating Agents - pharmacology ; Connexin 26 ; Connexins - genetics ; Connexins - physiology ; Dose-Response Relationship, Drug ; Egtazic Acid - analogs &amp; derivatives ; Egtazic Acid - pharmacology ; Female ; Gap Junction delta-2 Protein ; Gap Junctions - drug effects ; Gap Junctions - physiology ; Green Fluorescent Proteins - genetics ; Humans ; In Vitro Techniques ; Intracellular Fluid - metabolism ; Ion Channel Gating - drug effects ; Ion Channel Gating - physiology ; Magnesium - metabolism ; Magnesium - pharmacology ; Male ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Mice ; Neurons - cytology ; Neurons - metabolism ; Patch-Clamp Techniques ; Phosphorylation ; Rats ; Rats, Sprague-Dawley ; Tegmentum Mesencephali - cytology ; Transfection</subject><ispartof>The Journal of neuroscience, 2013-03, Vol.33 (11), p.4741-4753</ispartof><rights>Copyright © 2013 the authors 0270-6474/13/334741-13$15.00/0 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-57f2a32c2607d36a85df910daa3a2060382d2b2e17b94a91dce6497bbe5bdb9d3</citedby><cites>FETCH-LOGICAL-c566t-57f2a32c2607d36a85df910daa3a2060382d2b2e17b94a91dce6497bbe5bdb9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635812/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635812/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23486946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palacios-Prado, Nicolás</creatorcontrib><creatorcontrib>Hoge, Gregory</creatorcontrib><creatorcontrib>Marandykina, Alina</creatorcontrib><creatorcontrib>Rimkute, Lina</creatorcontrib><creatorcontrib>Chapuis, Sandrine</creatorcontrib><creatorcontrib>Paulauskas, Nerijus</creatorcontrib><creatorcontrib>Skeberdis, Vytenis A</creatorcontrib><creatorcontrib>O'Brien, John</creatorcontrib><creatorcontrib>Pereda, Alberto E</creatorcontrib><creatorcontrib>Bennett, Michael V L</creatorcontrib><creatorcontrib>Bukauskas, Feliksas F</creatorcontrib><title>Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Gap junction (GJ) channels composed of Connexin36 (Cx36) are widely expressed in the mammalian CNS and form electrical synapses between neurons. Here we describe a novel modulatory mechanism of Cx36 GJ channels dependent on intracellular free magnesium ([Mg(2+)]i). We examined junctional conductance (gj) and its dependence on transjunctional voltage (Vj) at different [Mg(2+)]i in cultures of HeLa or N2A cells expressing Cx36. We found that Cx36 GJs are partially inhibited at resting [Mg(2+)]i. Thus, gj can be augmented or reduced by lowering or increasing [Mg(2+)]i, respectively. Similar changes in gj and Vj-gating were observed using MgATP or K2ATP in pipette solutions, which increases or decreases [Mg(2+)]i, respectively. Changes in phosphorylation of Cx36 or in intracellular free calcium concentration were not involved in the observed Mg(2+)-dependent modulation of gj. Magnesium ions permeate the channel and transjunctional asymmetry in [Mg(2+)]i resulted in asymmetric Vj-gating. The gj of GJs formed of Cx26, Cx32, Cx43, Cx45, and Cx47 was also reduced by increasing [Mg(2+)]i, but was not increased by lowering [Mg(2+)]i; single-channel conductance did not change. We showed that [Mg(2+)]i affects both open probability and the number of functional channels, likely through binding in the channel lumen. Finally, we showed that Cx36-containing electrical synapses between neurons of the trigeminal mesencephalic nucleus in rat brain slices are similarly affected by changes in [Mg(2+)]i. Thus, this novel modulatory mechanism could underlie changes in neuronal synchronization under conditions in which ATP levels, and consequently [Mg(2+)]i, are modified.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biophysical Phenomena - drug effects</subject><subject>Biophysical Phenomena - physiology</subject><subject>Cations, Divalent - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Chelating Agents - pharmacology</subject><subject>Connexin 26</subject><subject>Connexins - genetics</subject><subject>Connexins - physiology</subject><subject>Dose-Response Relationship, Drug</subject><subject>Egtazic Acid - analogs &amp; derivatives</subject><subject>Egtazic Acid - pharmacology</subject><subject>Female</subject><subject>Gap Junction delta-2 Protein</subject><subject>Gap Junctions - drug effects</subject><subject>Gap Junctions - physiology</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Intracellular Fluid - metabolism</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion Channel Gating - physiology</subject><subject>Magnesium - metabolism</subject><subject>Magnesium - pharmacology</subject><subject>Male</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Mice</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>Phosphorylation</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Tegmentum Mesencephali - cytology</subject><subject>Transfection</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkV1r2zAUhsXoWLJuf6HosjfOpCNLsm8GJaRtRllgW66FLMmJgy2lkl2af1-77cJ2dTi857zn40HoipIF5cC-_fi52v7a_F6uF1AAzygsgFD2Ac1HtcwgJ_QCzQlIkolc5jP0OaUDIUQSKj-hGbC8EGUu5sisfR-1cW07tDriTu-8S83QZdYdnbfO97gLdtT6JngcarzTR3wYvHnNzV5779qE6xA7Z3F1wt4NMXjdYhNG6bnxTHxBH2vdJvf1PV6i7e3qz_I-e9jcrZc3D5nhQvQZlzVoBgYEkZYJXXBbl5RYrZkGIggrwEIFjsqqzHVJrXEiL2VVOV7ZqrTsEn1_8z0O1biNcdNprTrGptPxpIJu1P-Kb_ZqF54UE4wXFEaD63eDGB4Hl3rVNWn6jfYuDElRzqmgXIIYS8VbqYkhpejq8xhK1ERInQmpiZCioCZCY-PVv0ue2_4iYS_0HpD6</recordid><startdate>20130313</startdate><enddate>20130313</enddate><creator>Palacios-Prado, Nicolás</creator><creator>Hoge, Gregory</creator><creator>Marandykina, Alina</creator><creator>Rimkute, Lina</creator><creator>Chapuis, Sandrine</creator><creator>Paulauskas, Nerijus</creator><creator>Skeberdis, Vytenis A</creator><creator>O'Brien, John</creator><creator>Pereda, Alberto E</creator><creator>Bennett, Michael V L</creator><creator>Bukauskas, Feliksas F</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20130313</creationdate><title>Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36</title><author>Palacios-Prado, Nicolás ; Hoge, Gregory ; Marandykina, Alina ; Rimkute, Lina ; Chapuis, Sandrine ; Paulauskas, Nerijus ; Skeberdis, Vytenis A ; O'Brien, John ; Pereda, Alberto E ; Bennett, Michael V L ; Bukauskas, Feliksas F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-57f2a32c2607d36a85df910daa3a2060382d2b2e17b94a91dce6497bbe5bdb9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biophysical Phenomena - drug effects</topic><topic>Biophysical Phenomena - physiology</topic><topic>Cations, Divalent - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Chelating Agents - pharmacology</topic><topic>Connexin 26</topic><topic>Connexins - genetics</topic><topic>Connexins - physiology</topic><topic>Dose-Response Relationship, Drug</topic><topic>Egtazic Acid - analogs &amp; derivatives</topic><topic>Egtazic Acid - pharmacology</topic><topic>Female</topic><topic>Gap Junction delta-2 Protein</topic><topic>Gap Junctions - drug effects</topic><topic>Gap Junctions - physiology</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Intracellular Fluid - metabolism</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion Channel Gating - physiology</topic><topic>Magnesium - metabolism</topic><topic>Magnesium - pharmacology</topic><topic>Male</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Mice</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>Phosphorylation</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Tegmentum Mesencephali - cytology</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palacios-Prado, Nicolás</creatorcontrib><creatorcontrib>Hoge, Gregory</creatorcontrib><creatorcontrib>Marandykina, Alina</creatorcontrib><creatorcontrib>Rimkute, Lina</creatorcontrib><creatorcontrib>Chapuis, Sandrine</creatorcontrib><creatorcontrib>Paulauskas, Nerijus</creatorcontrib><creatorcontrib>Skeberdis, Vytenis A</creatorcontrib><creatorcontrib>O'Brien, John</creatorcontrib><creatorcontrib>Pereda, Alberto E</creatorcontrib><creatorcontrib>Bennett, Michael V L</creatorcontrib><creatorcontrib>Bukauskas, Feliksas F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palacios-Prado, Nicolás</au><au>Hoge, Gregory</au><au>Marandykina, Alina</au><au>Rimkute, Lina</au><au>Chapuis, Sandrine</au><au>Paulauskas, Nerijus</au><au>Skeberdis, Vytenis A</au><au>O'Brien, John</au><au>Pereda, Alberto E</au><au>Bennett, Michael V L</au><au>Bukauskas, Feliksas F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2013-03-13</date><risdate>2013</risdate><volume>33</volume><issue>11</issue><spage>4741</spage><epage>4753</epage><pages>4741-4753</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Gap junction (GJ) channels composed of Connexin36 (Cx36) are widely expressed in the mammalian CNS and form electrical synapses between neurons. Here we describe a novel modulatory mechanism of Cx36 GJ channels dependent on intracellular free magnesium ([Mg(2+)]i). We examined junctional conductance (gj) and its dependence on transjunctional voltage (Vj) at different [Mg(2+)]i in cultures of HeLa or N2A cells expressing Cx36. We found that Cx36 GJs are partially inhibited at resting [Mg(2+)]i. Thus, gj can be augmented or reduced by lowering or increasing [Mg(2+)]i, respectively. Similar changes in gj and Vj-gating were observed using MgATP or K2ATP in pipette solutions, which increases or decreases [Mg(2+)]i, respectively. Changes in phosphorylation of Cx36 or in intracellular free calcium concentration were not involved in the observed Mg(2+)-dependent modulation of gj. Magnesium ions permeate the channel and transjunctional asymmetry in [Mg(2+)]i resulted in asymmetric Vj-gating. The gj of GJs formed of Cx26, Cx32, Cx43, Cx45, and Cx47 was also reduced by increasing [Mg(2+)]i, but was not increased by lowering [Mg(2+)]i; single-channel conductance did not change. We showed that [Mg(2+)]i affects both open probability and the number of functional channels, likely through binding in the channel lumen. Finally, we showed that Cx36-containing electrical synapses between neurons of the trigeminal mesencephalic nucleus in rat brain slices are similarly affected by changes in [Mg(2+)]i. Thus, this novel modulatory mechanism could underlie changes in neuronal synchronization under conditions in which ATP levels, and consequently [Mg(2+)]i, are modified.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>23486946</pmid><doi>10.1523/JNEUROSCI.2825-12.2013</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2013-03, Vol.33 (11), p.4741-4753
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3635812
source MEDLINE; PubMed Central; EZB Electronic Journals Library
subjects Adenosine Triphosphate - metabolism
Animals
Animals, Newborn
Biophysical Phenomena - drug effects
Biophysical Phenomena - physiology
Cations, Divalent - metabolism
Cell Line, Tumor
Chelating Agents - pharmacology
Connexin 26
Connexins - genetics
Connexins - physiology
Dose-Response Relationship, Drug
Egtazic Acid - analogs & derivatives
Egtazic Acid - pharmacology
Female
Gap Junction delta-2 Protein
Gap Junctions - drug effects
Gap Junctions - physiology
Green Fluorescent Proteins - genetics
Humans
In Vitro Techniques
Intracellular Fluid - metabolism
Ion Channel Gating - drug effects
Ion Channel Gating - physiology
Magnesium - metabolism
Magnesium - pharmacology
Male
Membrane Potentials - drug effects
Membrane Potentials - physiology
Mice
Neurons - cytology
Neurons - metabolism
Patch-Clamp Techniques
Phosphorylation
Rats
Rats, Sprague-Dawley
Tegmentum Mesencephali - cytology
Transfection
title Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A51%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20magnesium-dependent%20modulation%20of%20gap%20junction%20channels%20formed%20by%20neuronal%20connexin36&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Palacios-Prado,%20Nicol%C3%A1s&rft.date=2013-03-13&rft.volume=33&rft.issue=11&rft.spage=4741&rft.epage=4753&rft.pages=4741-4753&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2825-12.2013&rft_dat=%3Cproquest_pubme%3E1551615726%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551615726&rft_id=info:pmid/23486946&rfr_iscdi=true