Regulation of Arabidopsis Leaf Hydraulics Involves Light-Dependent Phosphorylation of Aquaporins in Veins

The water status of plant leaves depends on the efficiency of the water supply, from the vasculature to inner tissues. This process is under hormonal and environmental regulation and involves aquaporin water channels. In Arabidopsis thaliana, the rosette hydraulic conductivity (K ros ) is higher in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2013-03, Vol.25 (3), p.1029-1039
Hauptverfasser: Prado, Karine, Boursiac, Yann, Tournaire-Roux, Colette, Monneuse, Jean-Marc, Postaire, Olivier, Da Ines, Olivier, Schäffner, Anton R., Hem, Sonia, Santoni, Véronique, Maurel, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1039
container_issue 3
container_start_page 1029
container_title The Plant cell
container_volume 25
creator Prado, Karine
Boursiac, Yann
Tournaire-Roux, Colette
Monneuse, Jean-Marc
Postaire, Olivier
Da Ines, Olivier
Schäffner, Anton R.
Hem, Sonia
Santoni, Véronique
Maurel, Christophe
description The water status of plant leaves depends on the efficiency of the water supply, from the vasculature to inner tissues. This process is under hormonal and environmental regulation and involves aquaporin water channels. In Arabidopsis thaliana, the rosette hydraulic conductivity (K ros ) is higher in darkness than it is during the day. Knockout plants showed that three plasma membrane intrinsic proteins (PIPs) sharing expression in veins (PIP1;2, PIP2;1, and PIP2;6) contribute to rosette water transport, and PIP2;1 can fully account for K ros responsiveness to darkness. Directed expression of PIP2;1 in veins of a pip2;1 mutant was sufficient to restore K ros . In addition, a positive correlation, in both wild-type and PIP2;1-overexpressing plants, was found between K ros and the osmotic water permeability of protoplasts from the veins but not from the mesophyll. Thus, living cells in veins form a major hydraulic resistance in leaves. Quantitative proteomic analyses showed that light-dependent regulation of K ros is linked to diphosphorylation of PIP2;1 at Ser-280 and Ser-283. Expression in pip2;1 of phosphomimetic and phosphorylation-deficient forms of PIP2;1 demonstrated that phosphorylation at these two sites is necessary for K ros enhancement under darkness. These findings establish how regulation of a single aquaporin isoform in leaf veins critically determines leaf hydraulics.
doi_str_mv 10.1105/tpc.112.108456
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3634675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23483164</jstor_id><sourcerecordid>23483164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-f95cee36f69e2d6758d1974453c696c33b1aa79a41e85e63c09a5f07870a15b53</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEoqVw5QbKkR6yHX8mviCtSmErrVSEAHGzvM5k4yobp3ay0v73eJVSLVw4-cnzmzdjvyx7S2BBCIircbBJ0AWBigv5LDsngtGCqurX86SBQ8GlIGfZqxjvAYCURL3MzihLFJRwnrlvuJ06Mzrf577Jl8FsXO2H6GK-RtPkq0MdzNQ5G_Pbfu-7PaaC27Zj8QkH7Gvsx_xr6-PQ-nA48XmYzOCD62Pu-vwnJvE6e9GYLuKbx_Mi-_H55vv1qljffbm9Xq4LK7gYi0YJi8hkIxXSWpaiqokqORfMSiUtYxtiTKkMJ1gJlMyCMqKBsirBELER7CL7OPsO02aHtU0bBtPpIbidCQftjdN_V3rX6q3fayYZT_OSweVs0P7Ttlqu9fEOQFECDPYksR8ehwX_MGEc9c5Fi11nevRT1PT455QxKv6LkjRdVAyESuhiRm3wMQZsntYgoI-x6xR7ElTPsaeG96dvfsL_5JyAdzNwH0cfTuq8YkRy9hvWjbLq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346583059</pqid></control><display><type>article</type><title>Regulation of Arabidopsis Leaf Hydraulics Involves Light-Dependent Phosphorylation of Aquaporins in Veins</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Prado, Karine ; Boursiac, Yann ; Tournaire-Roux, Colette ; Monneuse, Jean-Marc ; Postaire, Olivier ; Da Ines, Olivier ; Schäffner, Anton R. ; Hem, Sonia ; Santoni, Véronique ; Maurel, Christophe</creator><creatorcontrib>Prado, Karine ; Boursiac, Yann ; Tournaire-Roux, Colette ; Monneuse, Jean-Marc ; Postaire, Olivier ; Da Ines, Olivier ; Schäffner, Anton R. ; Hem, Sonia ; Santoni, Véronique ; Maurel, Christophe</creatorcontrib><description>The water status of plant leaves depends on the efficiency of the water supply, from the vasculature to inner tissues. This process is under hormonal and environmental regulation and involves aquaporin water channels. In Arabidopsis thaliana, the rosette hydraulic conductivity (K ros ) is higher in darkness than it is during the day. Knockout plants showed that three plasma membrane intrinsic proteins (PIPs) sharing expression in veins (PIP1;2, PIP2;1, and PIP2;6) contribute to rosette water transport, and PIP2;1 can fully account for K ros responsiveness to darkness. Directed expression of PIP2;1 in veins of a pip2;1 mutant was sufficient to restore K ros . In addition, a positive correlation, in both wild-type and PIP2;1-overexpressing plants, was found between K ros and the osmotic water permeability of protoplasts from the veins but not from the mesophyll. Thus, living cells in veins form a major hydraulic resistance in leaves. Quantitative proteomic analyses showed that light-dependent regulation of K ros is linked to diphosphorylation of PIP2;1 at Ser-280 and Ser-283. Expression in pip2;1 of phosphomimetic and phosphorylation-deficient forms of PIP2;1 demonstrated that phosphorylation at these two sites is necessary for K ros enhancement under darkness. These findings establish how regulation of a single aquaporin isoform in leaf veins critically determines leaf hydraulics.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.112.108456</identifier><identifier>PMID: 23532070</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Aquaporins ; Aquaporins - genetics ; Aquaporins - metabolism ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - radiation effects ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biological Transport ; Cell Membrane - genetics ; Cell Membrane - metabolism ; Cell membranes ; Darkness ; fluid mechanics ; Gene Expression Regulation, Plant ; Hydraulics ; leaves ; Life Sciences ; Light ; Mesophyll ; Mesophyll Cells - metabolism ; Osmosis ; permeability ; Phosphorylation ; Physiological regulation ; Plant cells ; Plant Leaves - genetics ; Plant Leaves - metabolism ; Plant Leaves - radiation effects ; Plant Transpiration ; Plants ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Plants, Genetically Modified - radiation effects ; Protein isoforms ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; proteomics ; Protoplasts ; Vegetal Biology ; Water - metabolism</subject><ispartof>The Plant cell, 2013-03, Vol.25 (3), p.1029-1039</ispartof><rights>2013 American Society of Plant Biologists</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2013 American Society of Plant Biologists. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-f95cee36f69e2d6758d1974453c696c33b1aa79a41e85e63c09a5f07870a15b53</citedby><cites>FETCH-LOGICAL-c545t-f95cee36f69e2d6758d1974453c696c33b1aa79a41e85e63c09a5f07870a15b53</cites><orcidid>0000-0002-4255-6440 ; 0000-0003-1903-0464 ; 0000-0002-1437-0921 ; 0000-0002-2966-5597 ; 0000-0002-1868-3781 ; 0000-0002-9545-9003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23483164$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23483164$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23532070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00921030$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Prado, Karine</creatorcontrib><creatorcontrib>Boursiac, Yann</creatorcontrib><creatorcontrib>Tournaire-Roux, Colette</creatorcontrib><creatorcontrib>Monneuse, Jean-Marc</creatorcontrib><creatorcontrib>Postaire, Olivier</creatorcontrib><creatorcontrib>Da Ines, Olivier</creatorcontrib><creatorcontrib>Schäffner, Anton R.</creatorcontrib><creatorcontrib>Hem, Sonia</creatorcontrib><creatorcontrib>Santoni, Véronique</creatorcontrib><creatorcontrib>Maurel, Christophe</creatorcontrib><title>Regulation of Arabidopsis Leaf Hydraulics Involves Light-Dependent Phosphorylation of Aquaporins in Veins</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>The water status of plant leaves depends on the efficiency of the water supply, from the vasculature to inner tissues. This process is under hormonal and environmental regulation and involves aquaporin water channels. In Arabidopsis thaliana, the rosette hydraulic conductivity (K ros ) is higher in darkness than it is during the day. Knockout plants showed that three plasma membrane intrinsic proteins (PIPs) sharing expression in veins (PIP1;2, PIP2;1, and PIP2;6) contribute to rosette water transport, and PIP2;1 can fully account for K ros responsiveness to darkness. Directed expression of PIP2;1 in veins of a pip2;1 mutant was sufficient to restore K ros . In addition, a positive correlation, in both wild-type and PIP2;1-overexpressing plants, was found between K ros and the osmotic water permeability of protoplasts from the veins but not from the mesophyll. Thus, living cells in veins form a major hydraulic resistance in leaves. Quantitative proteomic analyses showed that light-dependent regulation of K ros is linked to diphosphorylation of PIP2;1 at Ser-280 and Ser-283. Expression in pip2;1 of phosphomimetic and phosphorylation-deficient forms of PIP2;1 demonstrated that phosphorylation at these two sites is necessary for K ros enhancement under darkness. These findings establish how regulation of a single aquaporin isoform in leaf veins critically determines leaf hydraulics.</description><subject>Aquaporins</subject><subject>Aquaporins - genetics</subject><subject>Aquaporins - metabolism</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - radiation effects</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biological Transport</subject><subject>Cell Membrane - genetics</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Darkness</subject><subject>fluid mechanics</subject><subject>Gene Expression Regulation, Plant</subject><subject>Hydraulics</subject><subject>leaves</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Mesophyll</subject><subject>Mesophyll Cells - metabolism</subject><subject>Osmosis</subject><subject>permeability</subject><subject>Phosphorylation</subject><subject>Physiological regulation</subject><subject>Plant cells</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - radiation effects</subject><subject>Plant Transpiration</subject><subject>Plants</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Plants, Genetically Modified - radiation effects</subject><subject>Protein isoforms</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>proteomics</subject><subject>Protoplasts</subject><subject>Vegetal Biology</subject><subject>Water - metabolism</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxSMEoqVw5QbKkR6yHX8mviCtSmErrVSEAHGzvM5k4yobp3ay0v73eJVSLVw4-cnzmzdjvyx7S2BBCIircbBJ0AWBigv5LDsngtGCqurX86SBQ8GlIGfZqxjvAYCURL3MzihLFJRwnrlvuJ06Mzrf577Jl8FsXO2H6GK-RtPkq0MdzNQ5G_Pbfu-7PaaC27Zj8QkH7Gvsx_xr6-PQ-nA48XmYzOCD62Pu-vwnJvE6e9GYLuKbx_Mi-_H55vv1qljffbm9Xq4LK7gYi0YJi8hkIxXSWpaiqokqORfMSiUtYxtiTKkMJ1gJlMyCMqKBsirBELER7CL7OPsO02aHtU0bBtPpIbidCQftjdN_V3rX6q3fayYZT_OSweVs0P7Ttlqu9fEOQFECDPYksR8ehwX_MGEc9c5Fi11nevRT1PT455QxKv6LkjRdVAyESuhiRm3wMQZsntYgoI-x6xR7ElTPsaeG96dvfsL_5JyAdzNwH0cfTuq8YkRy9hvWjbLq</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Prado, Karine</creator><creator>Boursiac, Yann</creator><creator>Tournaire-Roux, Colette</creator><creator>Monneuse, Jean-Marc</creator><creator>Postaire, Olivier</creator><creator>Da Ines, Olivier</creator><creator>Schäffner, Anton R.</creator><creator>Hem, Sonia</creator><creator>Santoni, Véronique</creator><creator>Maurel, Christophe</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Biologists (ASPB)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4255-6440</orcidid><orcidid>https://orcid.org/0000-0003-1903-0464</orcidid><orcidid>https://orcid.org/0000-0002-1437-0921</orcidid><orcidid>https://orcid.org/0000-0002-2966-5597</orcidid><orcidid>https://orcid.org/0000-0002-1868-3781</orcidid><orcidid>https://orcid.org/0000-0002-9545-9003</orcidid></search><sort><creationdate>20130301</creationdate><title>Regulation of Arabidopsis Leaf Hydraulics Involves Light-Dependent Phosphorylation of Aquaporins in Veins</title><author>Prado, Karine ; Boursiac, Yann ; Tournaire-Roux, Colette ; Monneuse, Jean-Marc ; Postaire, Olivier ; Da Ines, Olivier ; Schäffner, Anton R. ; Hem, Sonia ; Santoni, Véronique ; Maurel, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-f95cee36f69e2d6758d1974453c696c33b1aa79a41e85e63c09a5f07870a15b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aquaporins</topic><topic>Aquaporins - genetics</topic><topic>Aquaporins - metabolism</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - radiation effects</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biological Transport</topic><topic>Cell Membrane - genetics</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Darkness</topic><topic>fluid mechanics</topic><topic>Gene Expression Regulation, Plant</topic><topic>Hydraulics</topic><topic>leaves</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Mesophyll</topic><topic>Mesophyll Cells - metabolism</topic><topic>Osmosis</topic><topic>permeability</topic><topic>Phosphorylation</topic><topic>Physiological regulation</topic><topic>Plant cells</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - radiation effects</topic><topic>Plant Transpiration</topic><topic>Plants</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Plants, Genetically Modified - radiation effects</topic><topic>Protein isoforms</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>proteomics</topic><topic>Protoplasts</topic><topic>Vegetal Biology</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prado, Karine</creatorcontrib><creatorcontrib>Boursiac, Yann</creatorcontrib><creatorcontrib>Tournaire-Roux, Colette</creatorcontrib><creatorcontrib>Monneuse, Jean-Marc</creatorcontrib><creatorcontrib>Postaire, Olivier</creatorcontrib><creatorcontrib>Da Ines, Olivier</creatorcontrib><creatorcontrib>Schäffner, Anton R.</creatorcontrib><creatorcontrib>Hem, Sonia</creatorcontrib><creatorcontrib>Santoni, Véronique</creatorcontrib><creatorcontrib>Maurel, Christophe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prado, Karine</au><au>Boursiac, Yann</au><au>Tournaire-Roux, Colette</au><au>Monneuse, Jean-Marc</au><au>Postaire, Olivier</au><au>Da Ines, Olivier</au><au>Schäffner, Anton R.</au><au>Hem, Sonia</au><au>Santoni, Véronique</au><au>Maurel, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of Arabidopsis Leaf Hydraulics Involves Light-Dependent Phosphorylation of Aquaporins in Veins</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>25</volume><issue>3</issue><spage>1029</spage><epage>1039</epage><pages>1029-1039</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>The water status of plant leaves depends on the efficiency of the water supply, from the vasculature to inner tissues. This process is under hormonal and environmental regulation and involves aquaporin water channels. In Arabidopsis thaliana, the rosette hydraulic conductivity (K ros ) is higher in darkness than it is during the day. Knockout plants showed that three plasma membrane intrinsic proteins (PIPs) sharing expression in veins (PIP1;2, PIP2;1, and PIP2;6) contribute to rosette water transport, and PIP2;1 can fully account for K ros responsiveness to darkness. Directed expression of PIP2;1 in veins of a pip2;1 mutant was sufficient to restore K ros . In addition, a positive correlation, in both wild-type and PIP2;1-overexpressing plants, was found between K ros and the osmotic water permeability of protoplasts from the veins but not from the mesophyll. Thus, living cells in veins form a major hydraulic resistance in leaves. Quantitative proteomic analyses showed that light-dependent regulation of K ros is linked to diphosphorylation of PIP2;1 at Ser-280 and Ser-283. Expression in pip2;1 of phosphomimetic and phosphorylation-deficient forms of PIP2;1 demonstrated that phosphorylation at these two sites is necessary for K ros enhancement under darkness. These findings establish how regulation of a single aquaporin isoform in leaf veins critically determines leaf hydraulics.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>23532070</pmid><doi>10.1105/tpc.112.108456</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4255-6440</orcidid><orcidid>https://orcid.org/0000-0003-1903-0464</orcidid><orcidid>https://orcid.org/0000-0002-1437-0921</orcidid><orcidid>https://orcid.org/0000-0002-2966-5597</orcidid><orcidid>https://orcid.org/0000-0002-1868-3781</orcidid><orcidid>https://orcid.org/0000-0002-9545-9003</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2013-03, Vol.25 (3), p.1029-1039
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3634675
source MEDLINE; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Aquaporins
Aquaporins - genetics
Aquaporins - metabolism
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis - radiation effects
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biological Transport
Cell Membrane - genetics
Cell Membrane - metabolism
Cell membranes
Darkness
fluid mechanics
Gene Expression Regulation, Plant
Hydraulics
leaves
Life Sciences
Light
Mesophyll
Mesophyll Cells - metabolism
Osmosis
permeability
Phosphorylation
Physiological regulation
Plant cells
Plant Leaves - genetics
Plant Leaves - metabolism
Plant Leaves - radiation effects
Plant Transpiration
Plants
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
Plants, Genetically Modified - radiation effects
Protein isoforms
Protein Isoforms - genetics
Protein Isoforms - metabolism
proteomics
Protoplasts
Vegetal Biology
Water - metabolism
title Regulation of Arabidopsis Leaf Hydraulics Involves Light-Dependent Phosphorylation of Aquaporins in Veins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20Arabidopsis%20Leaf%20Hydraulics%20Involves%20Light-Dependent%20Phosphorylation%20of%20Aquaporins%20in%20Veins&rft.jtitle=The%20Plant%20cell&rft.au=Prado,%20Karine&rft.date=2013-03-01&rft.volume=25&rft.issue=3&rft.spage=1029&rft.epage=1039&rft.pages=1029-1039&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.112.108456&rft_dat=%3Cjstor_pubme%3E23483164%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346583059&rft_id=info:pmid/23532070&rft_jstor_id=23483164&rfr_iscdi=true