Dissection of DNA Damage Responses Using Multiconditional Genetic Interaction Maps

To protect the genome, cells have evolved a diverse set of pathways designed to sense, signal, and repair multiple types of DNA damage. To assess the degree of coordination and crosstalk among these pathways, we systematically mapped changes in the cell’s genetic network across a panel of different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2013-01, Vol.49 (2), p.346-358
Hauptverfasser: Guénolé, Aude, Srivas, Rohith, Vreeken, Kees, Wang, Ze Zhong, Wang, Shuyi, Krogan, Nevan J., Ideker, Trey, van Attikum, Haico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 358
container_issue 2
container_start_page 346
container_title Molecular cell
container_volume 49
creator Guénolé, Aude
Srivas, Rohith
Vreeken, Kees
Wang, Ze Zhong
Wang, Shuyi
Krogan, Nevan J.
Ideker, Trey
van Attikum, Haico
description To protect the genome, cells have evolved a diverse set of pathways designed to sense, signal, and repair multiple types of DNA damage. To assess the degree of coordination and crosstalk among these pathways, we systematically mapped changes in the cell’s genetic network across a panel of different DNA-damaging agents, resulting in ∼1,800,000 differential measurements. Each agent was associated with a distinct interaction pattern, which, unlike single-mutant phenotypes or gene expression data, has high statistical power to pinpoint the specific repair mechanisms at work. The agent-specific networks revealed roles for the histone acetyltranferase Rtt109 in the mutagenic bypass of DNA lesions and the neddylation machinery in cell-cycle regulation and genome stability, while the network induced by multiple agents implicates Irc21, an uncharacterized protein, in checkpoint control and DNA repair. Our multiconditional genetic interaction map provides a unique resource that identifies agent-specific and general DNA damage response pathways. [Display omitted] ► A resource of genetic modules and networks induced by distinct types of DNA damage ► Networks distinguish DNA damage response pathways with high statistical power ► Rtt109, a histone acetyltransferase, affects the mutagenic bypass of DNA lesions ► The neddylation machinery and Irc21 affect cell-cycle control and genome stability
doi_str_mv 10.1016/j.molcel.2012.11.023
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3633480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S109727651200980X</els_id><sourcerecordid>1315612433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c619t-f5c3ebdaf7b9e6f43fb748f21a95343d55f1c356824459182ad9586d0b0c77263</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSNERR_wDxBkyWZSX7-SbJCqTlsqtSAVZm05zvXgUWIPdqYS_74eZajKBryxZZ97dHy-ongPpAIC8nxTjWEwOFSUAK0AKkLZq-IESFsvOEj--nCmtRTHxWlKG0KAi6Z9UxxTRmvWNuykeFi6lNBMLvgy2HL59aJc6lGvsXzAtA0-YSpXyfl1eb8bJmeC791erIfyBj3mm_LWTxj1bHGvt-ltcWT1kPDdYT8rVtdXPy6_LO6-3dxeXtwtjIR2WlhhGHa9tnXXorSc2a7mjaWgW8E464WwYJiQDeVctNBQ3beikT3piKlrKtlZ8Xn23e66EXuDfop6UNvoRh1_q6Cd-vvFu59qHR4Vk4zxhmSDTweDGH7tME1qdCk3OmiPYZcUJXk1jSTwXykwEBIoZyxL-Sw1MaQU0T4nAqL25NRGzeTUnpwCUJlcHvvw8jfPQ39QZcHHWWB1UHodXVKr79lB5pDAWv6iEMytPzqMKhmH3mDvYkas-uD-neEJDda1LA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315612433</pqid></control><display><type>article</type><title>Dissection of DNA Damage Responses Using Multiconditional Genetic Interaction Maps</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Free Full-Text Journals in Chemistry</source><creator>Guénolé, Aude ; Srivas, Rohith ; Vreeken, Kees ; Wang, Ze Zhong ; Wang, Shuyi ; Krogan, Nevan J. ; Ideker, Trey ; van Attikum, Haico</creator><creatorcontrib>Guénolé, Aude ; Srivas, Rohith ; Vreeken, Kees ; Wang, Ze Zhong ; Wang, Shuyi ; Krogan, Nevan J. ; Ideker, Trey ; van Attikum, Haico</creatorcontrib><description>To protect the genome, cells have evolved a diverse set of pathways designed to sense, signal, and repair multiple types of DNA damage. To assess the degree of coordination and crosstalk among these pathways, we systematically mapped changes in the cell’s genetic network across a panel of different DNA-damaging agents, resulting in ∼1,800,000 differential measurements. Each agent was associated with a distinct interaction pattern, which, unlike single-mutant phenotypes or gene expression data, has high statistical power to pinpoint the specific repair mechanisms at work. The agent-specific networks revealed roles for the histone acetyltranferase Rtt109 in the mutagenic bypass of DNA lesions and the neddylation machinery in cell-cycle regulation and genome stability, while the network induced by multiple agents implicates Irc21, an uncharacterized protein, in checkpoint control and DNA repair. Our multiconditional genetic interaction map provides a unique resource that identifies agent-specific and general DNA damage response pathways. [Display omitted] ► A resource of genetic modules and networks induced by distinct types of DNA damage ► Networks distinguish DNA damage response pathways with high statistical power ► Rtt109, a histone acetyltransferase, affects the mutagenic bypass of DNA lesions ► The neddylation machinery and Irc21 affect cell-cycle control and genome stability</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2012.11.023</identifier><identifier>PMID: 23273983</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>agents ; cell cycle ; Cell Cycle Checkpoints - genetics ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Chromatin Assembly and Disassembly - genetics ; DNA ; DNA Damage ; DNA repair ; DNA Repair - genetics ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Endonucleases - genetics ; Endonucleases - metabolism ; Epistasis, Genetic ; gene expression ; Gene Knockout Techniques ; Gene Regulatory Networks ; genome ; Genome, Fungal ; Genomic Instability ; Histone Acetyltransferases - genetics ; Histone Acetyltransferases - metabolism ; histones ; mutagenicity ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; phenotype ; Phosphoprotein Phosphatases - genetics ; Phosphoprotein Phosphatases - metabolism ; Protein Interaction Mapping ; Protein Processing, Post-Translational ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Molecular cell, 2013-01, Vol.49 (2), p.346-358</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>2013 Elsevier Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c619t-f5c3ebdaf7b9e6f43fb748f21a95343d55f1c356824459182ad9586d0b0c77263</citedby><cites>FETCH-LOGICAL-c619t-f5c3ebdaf7b9e6f43fb748f21a95343d55f1c356824459182ad9586d0b0c77263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2012.11.023$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23273983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guénolé, Aude</creatorcontrib><creatorcontrib>Srivas, Rohith</creatorcontrib><creatorcontrib>Vreeken, Kees</creatorcontrib><creatorcontrib>Wang, Ze Zhong</creatorcontrib><creatorcontrib>Wang, Shuyi</creatorcontrib><creatorcontrib>Krogan, Nevan J.</creatorcontrib><creatorcontrib>Ideker, Trey</creatorcontrib><creatorcontrib>van Attikum, Haico</creatorcontrib><title>Dissection of DNA Damage Responses Using Multiconditional Genetic Interaction Maps</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>To protect the genome, cells have evolved a diverse set of pathways designed to sense, signal, and repair multiple types of DNA damage. To assess the degree of coordination and crosstalk among these pathways, we systematically mapped changes in the cell’s genetic network across a panel of different DNA-damaging agents, resulting in ∼1,800,000 differential measurements. Each agent was associated with a distinct interaction pattern, which, unlike single-mutant phenotypes or gene expression data, has high statistical power to pinpoint the specific repair mechanisms at work. The agent-specific networks revealed roles for the histone acetyltranferase Rtt109 in the mutagenic bypass of DNA lesions and the neddylation machinery in cell-cycle regulation and genome stability, while the network induced by multiple agents implicates Irc21, an uncharacterized protein, in checkpoint control and DNA repair. Our multiconditional genetic interaction map provides a unique resource that identifies agent-specific and general DNA damage response pathways. [Display omitted] ► A resource of genetic modules and networks induced by distinct types of DNA damage ► Networks distinguish DNA damage response pathways with high statistical power ► Rtt109, a histone acetyltransferase, affects the mutagenic bypass of DNA lesions ► The neddylation machinery and Irc21 affect cell-cycle control and genome stability</description><subject>agents</subject><subject>cell cycle</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromatin Assembly and Disassembly - genetics</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA repair</subject><subject>DNA Repair - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Epistasis, Genetic</subject><subject>gene expression</subject><subject>Gene Knockout Techniques</subject><subject>Gene Regulatory Networks</subject><subject>genome</subject><subject>Genome, Fungal</subject><subject>Genomic Instability</subject><subject>Histone Acetyltransferases - genetics</subject><subject>Histone Acetyltransferases - metabolism</subject><subject>histones</subject><subject>mutagenicity</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>phenotype</subject><subject>Phosphoprotein Phosphatases - genetics</subject><subject>Phosphoprotein Phosphatases - metabolism</subject><subject>Protein Interaction Mapping</subject><subject>Protein Processing, Post-Translational</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhSNERR_wDxBkyWZSX7-SbJCqTlsqtSAVZm05zvXgUWIPdqYS_74eZajKBryxZZ97dHy-ongPpAIC8nxTjWEwOFSUAK0AKkLZq-IESFsvOEj--nCmtRTHxWlKG0KAi6Z9UxxTRmvWNuykeFi6lNBMLvgy2HL59aJc6lGvsXzAtA0-YSpXyfl1eb8bJmeC791erIfyBj3mm_LWTxj1bHGvt-ltcWT1kPDdYT8rVtdXPy6_LO6-3dxeXtwtjIR2WlhhGHa9tnXXorSc2a7mjaWgW8E464WwYJiQDeVctNBQ3beikT3piKlrKtlZ8Xn23e66EXuDfop6UNvoRh1_q6Cd-vvFu59qHR4Vk4zxhmSDTweDGH7tME1qdCk3OmiPYZcUJXk1jSTwXykwEBIoZyxL-Sw1MaQU0T4nAqL25NRGzeTUnpwCUJlcHvvw8jfPQ39QZcHHWWB1UHodXVKr79lB5pDAWv6iEMytPzqMKhmH3mDvYkas-uD-neEJDda1LA</recordid><startdate>20130124</startdate><enddate>20130124</enddate><creator>Guénolé, Aude</creator><creator>Srivas, Rohith</creator><creator>Vreeken, Kees</creator><creator>Wang, Ze Zhong</creator><creator>Wang, Shuyi</creator><creator>Krogan, Nevan J.</creator><creator>Ideker, Trey</creator><creator>van Attikum, Haico</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130124</creationdate><title>Dissection of DNA Damage Responses Using Multiconditional Genetic Interaction Maps</title><author>Guénolé, Aude ; Srivas, Rohith ; Vreeken, Kees ; Wang, Ze Zhong ; Wang, Shuyi ; Krogan, Nevan J. ; Ideker, Trey ; van Attikum, Haico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c619t-f5c3ebdaf7b9e6f43fb748f21a95343d55f1c356824459182ad9586d0b0c77263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>agents</topic><topic>cell cycle</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromatin Assembly and Disassembly - genetics</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA repair</topic><topic>DNA Repair - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Epistasis, Genetic</topic><topic>gene expression</topic><topic>Gene Knockout Techniques</topic><topic>Gene Regulatory Networks</topic><topic>genome</topic><topic>Genome, Fungal</topic><topic>Genomic Instability</topic><topic>Histone Acetyltransferases - genetics</topic><topic>Histone Acetyltransferases - metabolism</topic><topic>histones</topic><topic>mutagenicity</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>phenotype</topic><topic>Phosphoprotein Phosphatases - genetics</topic><topic>Phosphoprotein Phosphatases - metabolism</topic><topic>Protein Interaction Mapping</topic><topic>Protein Processing, Post-Translational</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guénolé, Aude</creatorcontrib><creatorcontrib>Srivas, Rohith</creatorcontrib><creatorcontrib>Vreeken, Kees</creatorcontrib><creatorcontrib>Wang, Ze Zhong</creatorcontrib><creatorcontrib>Wang, Shuyi</creatorcontrib><creatorcontrib>Krogan, Nevan J.</creatorcontrib><creatorcontrib>Ideker, Trey</creatorcontrib><creatorcontrib>van Attikum, Haico</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guénolé, Aude</au><au>Srivas, Rohith</au><au>Vreeken, Kees</au><au>Wang, Ze Zhong</au><au>Wang, Shuyi</au><au>Krogan, Nevan J.</au><au>Ideker, Trey</au><au>van Attikum, Haico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissection of DNA Damage Responses Using Multiconditional Genetic Interaction Maps</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2013-01-24</date><risdate>2013</risdate><volume>49</volume><issue>2</issue><spage>346</spage><epage>358</epage><pages>346-358</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>To protect the genome, cells have evolved a diverse set of pathways designed to sense, signal, and repair multiple types of DNA damage. To assess the degree of coordination and crosstalk among these pathways, we systematically mapped changes in the cell’s genetic network across a panel of different DNA-damaging agents, resulting in ∼1,800,000 differential measurements. Each agent was associated with a distinct interaction pattern, which, unlike single-mutant phenotypes or gene expression data, has high statistical power to pinpoint the specific repair mechanisms at work. The agent-specific networks revealed roles for the histone acetyltranferase Rtt109 in the mutagenic bypass of DNA lesions and the neddylation machinery in cell-cycle regulation and genome stability, while the network induced by multiple agents implicates Irc21, an uncharacterized protein, in checkpoint control and DNA repair. Our multiconditional genetic interaction map provides a unique resource that identifies agent-specific and general DNA damage response pathways. [Display omitted] ► A resource of genetic modules and networks induced by distinct types of DNA damage ► Networks distinguish DNA damage response pathways with high statistical power ► Rtt109, a histone acetyltransferase, affects the mutagenic bypass of DNA lesions ► The neddylation machinery and Irc21 affect cell-cycle control and genome stability</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23273983</pmid><doi>10.1016/j.molcel.2012.11.023</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2013-01, Vol.49 (2), p.346-358
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3633480
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); Free Full-Text Journals in Chemistry
subjects agents
cell cycle
Cell Cycle Checkpoints - genetics
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Chromatin Assembly and Disassembly - genetics
DNA
DNA Damage
DNA repair
DNA Repair - genetics
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Endonucleases - genetics
Endonucleases - metabolism
Epistasis, Genetic
gene expression
Gene Knockout Techniques
Gene Regulatory Networks
genome
Genome, Fungal
Genomic Instability
Histone Acetyltransferases - genetics
Histone Acetyltransferases - metabolism
histones
mutagenicity
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
phenotype
Phosphoprotein Phosphatases - genetics
Phosphoprotein Phosphatases - metabolism
Protein Interaction Mapping
Protein Processing, Post-Translational
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
title Dissection of DNA Damage Responses Using Multiconditional Genetic Interaction Maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissection%20of%20DNA%20Damage%20Responses%20Using%20Multiconditional%20Genetic%20Interaction%20Maps&rft.jtitle=Molecular%20cell&rft.au=Gu%C3%A9nol%C3%A9,%20Aude&rft.date=2013-01-24&rft.volume=49&rft.issue=2&rft.spage=346&rft.epage=358&rft.pages=346-358&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2012.11.023&rft_dat=%3Cproquest_pubme%3E1315612433%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1315612433&rft_id=info:pmid/23273983&rft_els_id=S109727651200980X&rfr_iscdi=true