Dissection of DNA Damage Responses Using Multiconditional Genetic Interaction Maps
To protect the genome, cells have evolved a diverse set of pathways designed to sense, signal, and repair multiple types of DNA damage. To assess the degree of coordination and crosstalk among these pathways, we systematically mapped changes in the cell’s genetic network across a panel of different...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2013-01, Vol.49 (2), p.346-358 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 358 |
---|---|
container_issue | 2 |
container_start_page | 346 |
container_title | Molecular cell |
container_volume | 49 |
creator | Guénolé, Aude Srivas, Rohith Vreeken, Kees Wang, Ze Zhong Wang, Shuyi Krogan, Nevan J. Ideker, Trey van Attikum, Haico |
description | To protect the genome, cells have evolved a diverse set of pathways designed to sense, signal, and repair multiple types of DNA damage. To assess the degree of coordination and crosstalk among these pathways, we systematically mapped changes in the cell’s genetic network across a panel of different DNA-damaging agents, resulting in ∼1,800,000 differential measurements. Each agent was associated with a distinct interaction pattern, which, unlike single-mutant phenotypes or gene expression data, has high statistical power to pinpoint the specific repair mechanisms at work. The agent-specific networks revealed roles for the histone acetyltranferase Rtt109 in the mutagenic bypass of DNA lesions and the neddylation machinery in cell-cycle regulation and genome stability, while the network induced by multiple agents implicates Irc21, an uncharacterized protein, in checkpoint control and DNA repair. Our multiconditional genetic interaction map provides a unique resource that identifies agent-specific and general DNA damage response pathways.
[Display omitted]
► A resource of genetic modules and networks induced by distinct types of DNA damage ► Networks distinguish DNA damage response pathways with high statistical power ► Rtt109, a histone acetyltransferase, affects the mutagenic bypass of DNA lesions ► The neddylation machinery and Irc21 affect cell-cycle control and genome stability |
doi_str_mv | 10.1016/j.molcel.2012.11.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3633480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S109727651200980X</els_id><sourcerecordid>1315612433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c619t-f5c3ebdaf7b9e6f43fb748f21a95343d55f1c356824459182ad9586d0b0c77263</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSNERR_wDxBkyWZSX7-SbJCqTlsqtSAVZm05zvXgUWIPdqYS_74eZajKBryxZZ97dHy-ongPpAIC8nxTjWEwOFSUAK0AKkLZq-IESFsvOEj--nCmtRTHxWlKG0KAi6Z9UxxTRmvWNuykeFi6lNBMLvgy2HL59aJc6lGvsXzAtA0-YSpXyfl1eb8bJmeC791erIfyBj3mm_LWTxj1bHGvt-ltcWT1kPDdYT8rVtdXPy6_LO6-3dxeXtwtjIR2WlhhGHa9tnXXorSc2a7mjaWgW8E464WwYJiQDeVctNBQ3beikT3piKlrKtlZ8Xn23e66EXuDfop6UNvoRh1_q6Cd-vvFu59qHR4Vk4zxhmSDTweDGH7tME1qdCk3OmiPYZcUJXk1jSTwXykwEBIoZyxL-Sw1MaQU0T4nAqL25NRGzeTUnpwCUJlcHvvw8jfPQ39QZcHHWWB1UHodXVKr79lB5pDAWv6iEMytPzqMKhmH3mDvYkas-uD-neEJDda1LA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315612433</pqid></control><display><type>article</type><title>Dissection of DNA Damage Responses Using Multiconditional Genetic Interaction Maps</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Free Full-Text Journals in Chemistry</source><creator>Guénolé, Aude ; Srivas, Rohith ; Vreeken, Kees ; Wang, Ze Zhong ; Wang, Shuyi ; Krogan, Nevan J. ; Ideker, Trey ; van Attikum, Haico</creator><creatorcontrib>Guénolé, Aude ; Srivas, Rohith ; Vreeken, Kees ; Wang, Ze Zhong ; Wang, Shuyi ; Krogan, Nevan J. ; Ideker, Trey ; van Attikum, Haico</creatorcontrib><description>To protect the genome, cells have evolved a diverse set of pathways designed to sense, signal, and repair multiple types of DNA damage. To assess the degree of coordination and crosstalk among these pathways, we systematically mapped changes in the cell’s genetic network across a panel of different DNA-damaging agents, resulting in ∼1,800,000 differential measurements. Each agent was associated with a distinct interaction pattern, which, unlike single-mutant phenotypes or gene expression data, has high statistical power to pinpoint the specific repair mechanisms at work. The agent-specific networks revealed roles for the histone acetyltranferase Rtt109 in the mutagenic bypass of DNA lesions and the neddylation machinery in cell-cycle regulation and genome stability, while the network induced by multiple agents implicates Irc21, an uncharacterized protein, in checkpoint control and DNA repair. Our multiconditional genetic interaction map provides a unique resource that identifies agent-specific and general DNA damage response pathways.
[Display omitted]
► A resource of genetic modules and networks induced by distinct types of DNA damage ► Networks distinguish DNA damage response pathways with high statistical power ► Rtt109, a histone acetyltransferase, affects the mutagenic bypass of DNA lesions ► The neddylation machinery and Irc21 affect cell-cycle control and genome stability</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2012.11.023</identifier><identifier>PMID: 23273983</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>agents ; cell cycle ; Cell Cycle Checkpoints - genetics ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Chromatin Assembly and Disassembly - genetics ; DNA ; DNA Damage ; DNA repair ; DNA Repair - genetics ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Endonucleases - genetics ; Endonucleases - metabolism ; Epistasis, Genetic ; gene expression ; Gene Knockout Techniques ; Gene Regulatory Networks ; genome ; Genome, Fungal ; Genomic Instability ; Histone Acetyltransferases - genetics ; Histone Acetyltransferases - metabolism ; histones ; mutagenicity ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; phenotype ; Phosphoprotein Phosphatases - genetics ; Phosphoprotein Phosphatases - metabolism ; Protein Interaction Mapping ; Protein Processing, Post-Translational ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Molecular cell, 2013-01, Vol.49 (2), p.346-358</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>2013 Elsevier Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c619t-f5c3ebdaf7b9e6f43fb748f21a95343d55f1c356824459182ad9586d0b0c77263</citedby><cites>FETCH-LOGICAL-c619t-f5c3ebdaf7b9e6f43fb748f21a95343d55f1c356824459182ad9586d0b0c77263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2012.11.023$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23273983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guénolé, Aude</creatorcontrib><creatorcontrib>Srivas, Rohith</creatorcontrib><creatorcontrib>Vreeken, Kees</creatorcontrib><creatorcontrib>Wang, Ze Zhong</creatorcontrib><creatorcontrib>Wang, Shuyi</creatorcontrib><creatorcontrib>Krogan, Nevan J.</creatorcontrib><creatorcontrib>Ideker, Trey</creatorcontrib><creatorcontrib>van Attikum, Haico</creatorcontrib><title>Dissection of DNA Damage Responses Using Multiconditional Genetic Interaction Maps</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>To protect the genome, cells have evolved a diverse set of pathways designed to sense, signal, and repair multiple types of DNA damage. To assess the degree of coordination and crosstalk among these pathways, we systematically mapped changes in the cell’s genetic network across a panel of different DNA-damaging agents, resulting in ∼1,800,000 differential measurements. Each agent was associated with a distinct interaction pattern, which, unlike single-mutant phenotypes or gene expression data, has high statistical power to pinpoint the specific repair mechanisms at work. The agent-specific networks revealed roles for the histone acetyltranferase Rtt109 in the mutagenic bypass of DNA lesions and the neddylation machinery in cell-cycle regulation and genome stability, while the network induced by multiple agents implicates Irc21, an uncharacterized protein, in checkpoint control and DNA repair. Our multiconditional genetic interaction map provides a unique resource that identifies agent-specific and general DNA damage response pathways.
[Display omitted]
► A resource of genetic modules and networks induced by distinct types of DNA damage ► Networks distinguish DNA damage response pathways with high statistical power ► Rtt109, a histone acetyltransferase, affects the mutagenic bypass of DNA lesions ► The neddylation machinery and Irc21 affect cell-cycle control and genome stability</description><subject>agents</subject><subject>cell cycle</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromatin Assembly and Disassembly - genetics</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA repair</subject><subject>DNA Repair - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Epistasis, Genetic</subject><subject>gene expression</subject><subject>Gene Knockout Techniques</subject><subject>Gene Regulatory Networks</subject><subject>genome</subject><subject>Genome, Fungal</subject><subject>Genomic Instability</subject><subject>Histone Acetyltransferases - genetics</subject><subject>Histone Acetyltransferases - metabolism</subject><subject>histones</subject><subject>mutagenicity</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>phenotype</subject><subject>Phosphoprotein Phosphatases - genetics</subject><subject>Phosphoprotein Phosphatases - metabolism</subject><subject>Protein Interaction Mapping</subject><subject>Protein Processing, Post-Translational</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhSNERR_wDxBkyWZSX7-SbJCqTlsqtSAVZm05zvXgUWIPdqYS_74eZajKBryxZZ97dHy-ongPpAIC8nxTjWEwOFSUAK0AKkLZq-IESFsvOEj--nCmtRTHxWlKG0KAi6Z9UxxTRmvWNuykeFi6lNBMLvgy2HL59aJc6lGvsXzAtA0-YSpXyfl1eb8bJmeC791erIfyBj3mm_LWTxj1bHGvt-ltcWT1kPDdYT8rVtdXPy6_LO6-3dxeXtwtjIR2WlhhGHa9tnXXorSc2a7mjaWgW8E464WwYJiQDeVctNBQ3beikT3piKlrKtlZ8Xn23e66EXuDfop6UNvoRh1_q6Cd-vvFu59qHR4Vk4zxhmSDTweDGH7tME1qdCk3OmiPYZcUJXk1jSTwXykwEBIoZyxL-Sw1MaQU0T4nAqL25NRGzeTUnpwCUJlcHvvw8jfPQ39QZcHHWWB1UHodXVKr79lB5pDAWv6iEMytPzqMKhmH3mDvYkas-uD-neEJDda1LA</recordid><startdate>20130124</startdate><enddate>20130124</enddate><creator>Guénolé, Aude</creator><creator>Srivas, Rohith</creator><creator>Vreeken, Kees</creator><creator>Wang, Ze Zhong</creator><creator>Wang, Shuyi</creator><creator>Krogan, Nevan J.</creator><creator>Ideker, Trey</creator><creator>van Attikum, Haico</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130124</creationdate><title>Dissection of DNA Damage Responses Using Multiconditional Genetic Interaction Maps</title><author>Guénolé, Aude ; Srivas, Rohith ; Vreeken, Kees ; Wang, Ze Zhong ; Wang, Shuyi ; Krogan, Nevan J. ; Ideker, Trey ; van Attikum, Haico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c619t-f5c3ebdaf7b9e6f43fb748f21a95343d55f1c356824459182ad9586d0b0c77263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>agents</topic><topic>cell cycle</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromatin Assembly and Disassembly - genetics</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA repair</topic><topic>DNA Repair - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Epistasis, Genetic</topic><topic>gene expression</topic><topic>Gene Knockout Techniques</topic><topic>Gene Regulatory Networks</topic><topic>genome</topic><topic>Genome, Fungal</topic><topic>Genomic Instability</topic><topic>Histone Acetyltransferases - genetics</topic><topic>Histone Acetyltransferases - metabolism</topic><topic>histones</topic><topic>mutagenicity</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>phenotype</topic><topic>Phosphoprotein Phosphatases - genetics</topic><topic>Phosphoprotein Phosphatases - metabolism</topic><topic>Protein Interaction Mapping</topic><topic>Protein Processing, Post-Translational</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guénolé, Aude</creatorcontrib><creatorcontrib>Srivas, Rohith</creatorcontrib><creatorcontrib>Vreeken, Kees</creatorcontrib><creatorcontrib>Wang, Ze Zhong</creatorcontrib><creatorcontrib>Wang, Shuyi</creatorcontrib><creatorcontrib>Krogan, Nevan J.</creatorcontrib><creatorcontrib>Ideker, Trey</creatorcontrib><creatorcontrib>van Attikum, Haico</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guénolé, Aude</au><au>Srivas, Rohith</au><au>Vreeken, Kees</au><au>Wang, Ze Zhong</au><au>Wang, Shuyi</au><au>Krogan, Nevan J.</au><au>Ideker, Trey</au><au>van Attikum, Haico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissection of DNA Damage Responses Using Multiconditional Genetic Interaction Maps</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2013-01-24</date><risdate>2013</risdate><volume>49</volume><issue>2</issue><spage>346</spage><epage>358</epage><pages>346-358</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>To protect the genome, cells have evolved a diverse set of pathways designed to sense, signal, and repair multiple types of DNA damage. To assess the degree of coordination and crosstalk among these pathways, we systematically mapped changes in the cell’s genetic network across a panel of different DNA-damaging agents, resulting in ∼1,800,000 differential measurements. Each agent was associated with a distinct interaction pattern, which, unlike single-mutant phenotypes or gene expression data, has high statistical power to pinpoint the specific repair mechanisms at work. The agent-specific networks revealed roles for the histone acetyltranferase Rtt109 in the mutagenic bypass of DNA lesions and the neddylation machinery in cell-cycle regulation and genome stability, while the network induced by multiple agents implicates Irc21, an uncharacterized protein, in checkpoint control and DNA repair. Our multiconditional genetic interaction map provides a unique resource that identifies agent-specific and general DNA damage response pathways.
[Display omitted]
► A resource of genetic modules and networks induced by distinct types of DNA damage ► Networks distinguish DNA damage response pathways with high statistical power ► Rtt109, a histone acetyltransferase, affects the mutagenic bypass of DNA lesions ► The neddylation machinery and Irc21 affect cell-cycle control and genome stability</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23273983</pmid><doi>10.1016/j.molcel.2012.11.023</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2013-01, Vol.49 (2), p.346-358 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3633480 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); Free Full-Text Journals in Chemistry |
subjects | agents cell cycle Cell Cycle Checkpoints - genetics Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Chromatin Assembly and Disassembly - genetics DNA DNA Damage DNA repair DNA Repair - genetics DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Endonucleases - genetics Endonucleases - metabolism Epistasis, Genetic gene expression Gene Knockout Techniques Gene Regulatory Networks genome Genome, Fungal Genomic Instability Histone Acetyltransferases - genetics Histone Acetyltransferases - metabolism histones mutagenicity Nuclear Proteins - genetics Nuclear Proteins - metabolism phenotype Phosphoprotein Phosphatases - genetics Phosphoprotein Phosphatases - metabolism Protein Interaction Mapping Protein Processing, Post-Translational Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism |
title | Dissection of DNA Damage Responses Using Multiconditional Genetic Interaction Maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissection%20of%20DNA%20Damage%20Responses%20Using%20Multiconditional%20Genetic%20Interaction%20Maps&rft.jtitle=Molecular%20cell&rft.au=Gu%C3%A9nol%C3%A9,%20Aude&rft.date=2013-01-24&rft.volume=49&rft.issue=2&rft.spage=346&rft.epage=358&rft.pages=346-358&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2012.11.023&rft_dat=%3Cproquest_pubme%3E1315612433%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1315612433&rft_id=info:pmid/23273983&rft_els_id=S109727651200980X&rfr_iscdi=true |