miR-155 Regulates Immune Modulatory Properties of Mesenchymal Stem Cells by Targeting TAK1-binding Protein 2

MSCs possess potent immunosuppressive capacity. We have reported that mouse MSCs inhibit T cell proliferation and function via nitric oxide. This immune regulatory capacity of MSCs is induced by the inflammatory cytokines IFNγ together with either TNFα or IL-1β. This effect of inflammatory cytokines...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-04, Vol.288 (16), p.11074-11079
Hauptverfasser: Xu, Chunliang, Ren, Guangwen, Cao, Gang, Chen, Qing, Shou, Peishun, Zheng, Chunxing, Du, Liming, Han, Xiaoyan, Jiang, Menghui, Yang, Qian, Lin, Liangyu, Wang, Guan, Yu, Pengfei, Zhang, Xin, Cao, Wei, Brewer, Gary, Wang, Ying, Shi, Yufang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MSCs possess potent immunosuppressive capacity. We have reported that mouse MSCs inhibit T cell proliferation and function via nitric oxide. This immune regulatory capacity of MSCs is induced by the inflammatory cytokines IFNγ together with either TNFα or IL-1β. This effect of inflammatory cytokines on MSCs is extraordinary; logarithmic increases in the expression of iNOS and chemokines are often observed. To investigate the molecular mechanisms underlying this robust effect of cytokines, we examined the expression of microRNAs in MSCs before and after cytokine treatment. We found that miR-155 is most significantly up-regulated. Furthermore, our results showed that miR-155 inhibits the immunosuppressive capacity of MSCs by reducing iNOS expression. We further demonstrated that miR-155 targets TAK1-binding protein 2 (TAB2) to regulate iNOS expression. Additionally, knockdown of TAB2 reduced iNOS expression. In summary, our study demonstrated that miR-155 inhibits the immunosuppressive capacity of MSCs by reducing iNOS expression by targeting TAB2. Our data revealed a novel role of miR-155 in regulating the immune modulatory activities of MSCs. Background: The molecular mechanisms underlining the immune regulatory property of mesenchymal stem cells (MSCs) are unknown. Results: Inflammatory cytokine-induced miR-155 reverses the immunosuppressive capacity of MSCs through inhibiting iNOS expression. Conclusion: The immune regulation-mediated by MSCs is tightly regulated by miR-155. Significance: This study revealed a novel role of miR-155 in regulating the immune modulatory activities of MSCs.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M112.414862