Human single-stranded DNA binding proteins are essential for maintaining genomic stability
The double-stranded conformation of cellular DNA is a central aspect of DNA stabilisation and protection. The helix preserves the genetic code against chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. However, there are various instances where single-st...
Gespeichert in:
Veröffentlicht in: | BMC molecular biology 2013-04, Vol.14 (1), p.9-9, Article 9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 9 |
container_title | BMC molecular biology |
container_volume | 14 |
creator | Ashton, Nicholas W Bolderson, Emma Cubeddu, Liza O'Byrne, Kenneth J Richard, Derek J |
description | The double-stranded conformation of cellular DNA is a central aspect of DNA stabilisation and protection. The helix preserves the genetic code against chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. However, there are various instances where single-stranded DNA is exposed, such as during replication or transcription, in the synthesis of chromosome ends, and following DNA damage. In these instances, single-stranded DNA binding proteins are essential for the sequestration and processing of single-stranded DNA. In order to bind single-stranded DNA, these proteins utilise a characteristic and evolutionary conserved single-stranded DNA-binding domain, the oligonucleotide/oligosaccharide-binding (OB)-fold. In the current review we discuss a subset of these proteins involved in the direct maintenance of genomic stability, an important cellular process in the conservation of cellular viability and prevention of malignant transformation. We discuss the central roles of single-stranded DNA binding proteins from the OB-fold domain family in DNA replication, the restart of stalled replication forks, DNA damage repair, cell cycle-checkpoint activation, and telomere maintenance. |
doi_str_mv | 10.1186/1471-2199-14-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3626794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534571901</galeid><sourcerecordid>A534571901</sourcerecordid><originalsourceid>FETCH-LOGICAL-b676t-f677515b4b9b325daafc741958d1c6a85fc71d311ca62a90417af4e7cf97e73a3</originalsourceid><addsrcrecordid>eNqFkktv1TAQhSMEoqWwZYkisYFFSiZ-xRukq_JopQokHhs21sRxgqvEvtgOov8eRy2XXihClmV75vPR6MwUxWOojwFa_gKogKoBKSuglbxTHO4Cd2_cD4oHMV7UNYiWtPeLg4Yw2gKRh8WX02VGV0brxslUMQV0venLV-82ZWddn8PlNvhkrIslBlOaGI1LFqdy8KGc0bqU94qNxvnZ6jIm7Oxk0-XD4t6AUzSPrs-j4vOb159OTqvz92_PTjbnVccFT9XAhWDAOtrJjjSsRxy0oCBZ24Pm2LL8hJ4AaOQNypqCwIEaoQcpjCBIjoqXV7rbpZtNr3N9ASe1DXbGcKk8WrWfcfarGv13RXjDhaRZYHMl0Fn_D4H9jPazWr1Vq7f5pmTWeHZdRPDfFhOTmm3UZprQGb9EBYQL2lKZG_B_tGmbRkjOMvr0D_TCL8FlN1dKsLoR0PymRpyMsm7wuUq9iqoNI5QJkDVk6vgWKq_e5LZ5Zwab43sfnu99yEwyP9KIS4zq7OOHW8V18DEGM-zcg1qtg_q3X09uNm2H_5pM8hN_U-IR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327502712</pqid></control><display><type>article</type><title>Human single-stranded DNA binding proteins are essential for maintaining genomic stability</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>BioMed Central Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ashton, Nicholas W ; Bolderson, Emma ; Cubeddu, Liza ; O'Byrne, Kenneth J ; Richard, Derek J</creator><creatorcontrib>Ashton, Nicholas W ; Bolderson, Emma ; Cubeddu, Liza ; O'Byrne, Kenneth J ; Richard, Derek J</creatorcontrib><description>The double-stranded conformation of cellular DNA is a central aspect of DNA stabilisation and protection. The helix preserves the genetic code against chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. However, there are various instances where single-stranded DNA is exposed, such as during replication or transcription, in the synthesis of chromosome ends, and following DNA damage. In these instances, single-stranded DNA binding proteins are essential for the sequestration and processing of single-stranded DNA. In order to bind single-stranded DNA, these proteins utilise a characteristic and evolutionary conserved single-stranded DNA-binding domain, the oligonucleotide/oligosaccharide-binding (OB)-fold. In the current review we discuss a subset of these proteins involved in the direct maintenance of genomic stability, an important cellular process in the conservation of cellular viability and prevention of malignant transformation. We discuss the central roles of single-stranded DNA binding proteins from the OB-fold domain family in DNA replication, the restart of stalled replication forks, DNA damage repair, cell cycle-checkpoint activation, and telomere maintenance.</description><identifier>ISSN: 1471-2199</identifier><identifier>EISSN: 1471-2199</identifier><identifier>DOI: 10.1186/1471-2199-14-9</identifier><identifier>PMID: 23548139</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Cancer ; Cell activation ; Cell Cycle ; Colleges & universities ; Councils ; Deoxyribonucleic acid ; DNA ; DNA binding proteins ; DNA damage ; DNA Repair ; DNA Replication ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Enzymes ; Genetic transcription ; Genetics ; Genomes ; Genomic Instability ; Genomics ; Humans ; Kinases ; Oligonucleotides - genetics ; Oligonucleotides - metabolism ; Polypeptides ; Protein binding ; Proteins ; Review ; Telomerase ; Telomeres</subject><ispartof>BMC molecular biology, 2013-04, Vol.14 (1), p.9-9, Article 9</ispartof><rights>COPYRIGHT 2013 BioMed Central Ltd.</rights><rights>2013 Ashton et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2013 Ashton et al.; licensee BioMed Central Ltd. 2013 Ashton et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b676t-f677515b4b9b325daafc741958d1c6a85fc71d311ca62a90417af4e7cf97e73a3</citedby><cites>FETCH-LOGICAL-b676t-f677515b4b9b325daafc741958d1c6a85fc71d311ca62a90417af4e7cf97e73a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626794/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626794/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,24781,27903,27904,53769,53771,75484,75485</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23548139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashton, Nicholas W</creatorcontrib><creatorcontrib>Bolderson, Emma</creatorcontrib><creatorcontrib>Cubeddu, Liza</creatorcontrib><creatorcontrib>O'Byrne, Kenneth J</creatorcontrib><creatorcontrib>Richard, Derek J</creatorcontrib><title>Human single-stranded DNA binding proteins are essential for maintaining genomic stability</title><title>BMC molecular biology</title><addtitle>BMC Mol Biol</addtitle><description>The double-stranded conformation of cellular DNA is a central aspect of DNA stabilisation and protection. The helix preserves the genetic code against chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. However, there are various instances where single-stranded DNA is exposed, such as during replication or transcription, in the synthesis of chromosome ends, and following DNA damage. In these instances, single-stranded DNA binding proteins are essential for the sequestration and processing of single-stranded DNA. In order to bind single-stranded DNA, these proteins utilise a characteristic and evolutionary conserved single-stranded DNA-binding domain, the oligonucleotide/oligosaccharide-binding (OB)-fold. In the current review we discuss a subset of these proteins involved in the direct maintenance of genomic stability, an important cellular process in the conservation of cellular viability and prevention of malignant transformation. We discuss the central roles of single-stranded DNA binding proteins from the OB-fold domain family in DNA replication, the restart of stalled replication forks, DNA damage repair, cell cycle-checkpoint activation, and telomere maintenance.</description><subject>Cancer</subject><subject>Cell activation</subject><subject>Cell Cycle</subject><subject>Colleges & universities</subject><subject>Councils</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA binding proteins</subject><subject>DNA damage</subject><subject>DNA Repair</subject><subject>DNA Replication</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Enzymes</subject><subject>Genetic transcription</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomic Instability</subject><subject>Genomics</subject><subject>Humans</subject><subject>Kinases</subject><subject>Oligonucleotides - genetics</subject><subject>Oligonucleotides - metabolism</subject><subject>Polypeptides</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Review</subject><subject>Telomerase</subject><subject>Telomeres</subject><issn>1471-2199</issn><issn>1471-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkktv1TAQhSMEoqWwZYkisYFFSiZ-xRukq_JopQokHhs21sRxgqvEvtgOov8eRy2XXihClmV75vPR6MwUxWOojwFa_gKogKoBKSuglbxTHO4Cd2_cD4oHMV7UNYiWtPeLg4Yw2gKRh8WX02VGV0brxslUMQV0venLV-82ZWddn8PlNvhkrIslBlOaGI1LFqdy8KGc0bqU94qNxvnZ6jIm7Oxk0-XD4t6AUzSPrs-j4vOb159OTqvz92_PTjbnVccFT9XAhWDAOtrJjjSsRxy0oCBZ24Pm2LL8hJ4AaOQNypqCwIEaoQcpjCBIjoqXV7rbpZtNr3N9ASe1DXbGcKk8WrWfcfarGv13RXjDhaRZYHMl0Fn_D4H9jPazWr1Vq7f5pmTWeHZdRPDfFhOTmm3UZprQGb9EBYQL2lKZG_B_tGmbRkjOMvr0D_TCL8FlN1dKsLoR0PymRpyMsm7wuUq9iqoNI5QJkDVk6vgWKq_e5LZ5Zwab43sfnu99yEwyP9KIS4zq7OOHW8V18DEGM-zcg1qtg_q3X09uNm2H_5pM8hN_U-IR</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Ashton, Nicholas W</creator><creator>Bolderson, Emma</creator><creator>Cubeddu, Liza</creator><creator>O'Byrne, Kenneth J</creator><creator>Richard, Derek J</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130401</creationdate><title>Human single-stranded DNA binding proteins are essential for maintaining genomic stability</title><author>Ashton, Nicholas W ; Bolderson, Emma ; Cubeddu, Liza ; O'Byrne, Kenneth J ; Richard, Derek J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b676t-f677515b4b9b325daafc741958d1c6a85fc71d311ca62a90417af4e7cf97e73a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cancer</topic><topic>Cell activation</topic><topic>Cell Cycle</topic><topic>Colleges & universities</topic><topic>Councils</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA binding proteins</topic><topic>DNA damage</topic><topic>DNA Repair</topic><topic>DNA Replication</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Enzymes</topic><topic>Genetic transcription</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomic Instability</topic><topic>Genomics</topic><topic>Humans</topic><topic>Kinases</topic><topic>Oligonucleotides - genetics</topic><topic>Oligonucleotides - metabolism</topic><topic>Polypeptides</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Review</topic><topic>Telomerase</topic><topic>Telomeres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashton, Nicholas W</creatorcontrib><creatorcontrib>Bolderson, Emma</creatorcontrib><creatorcontrib>Cubeddu, Liza</creatorcontrib><creatorcontrib>O'Byrne, Kenneth J</creatorcontrib><creatorcontrib>Richard, Derek J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashton, Nicholas W</au><au>Bolderson, Emma</au><au>Cubeddu, Liza</au><au>O'Byrne, Kenneth J</au><au>Richard, Derek J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human single-stranded DNA binding proteins are essential for maintaining genomic stability</atitle><jtitle>BMC molecular biology</jtitle><addtitle>BMC Mol Biol</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>14</volume><issue>1</issue><spage>9</spage><epage>9</epage><pages>9-9</pages><artnum>9</artnum><issn>1471-2199</issn><eissn>1471-2199</eissn><abstract>The double-stranded conformation of cellular DNA is a central aspect of DNA stabilisation and protection. The helix preserves the genetic code against chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. However, there are various instances where single-stranded DNA is exposed, such as during replication or transcription, in the synthesis of chromosome ends, and following DNA damage. In these instances, single-stranded DNA binding proteins are essential for the sequestration and processing of single-stranded DNA. In order to bind single-stranded DNA, these proteins utilise a characteristic and evolutionary conserved single-stranded DNA-binding domain, the oligonucleotide/oligosaccharide-binding (OB)-fold. In the current review we discuss a subset of these proteins involved in the direct maintenance of genomic stability, an important cellular process in the conservation of cellular viability and prevention of malignant transformation. We discuss the central roles of single-stranded DNA binding proteins from the OB-fold domain family in DNA replication, the restart of stalled replication forks, DNA damage repair, cell cycle-checkpoint activation, and telomere maintenance.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>23548139</pmid><doi>10.1186/1471-2199-14-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2199 |
ispartof | BMC molecular biology, 2013-04, Vol.14 (1), p.9-9, Article 9 |
issn | 1471-2199 1471-2199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3626794 |
source | MEDLINE; PubMed Central Open Access; Springer Nature OA Free Journals; BioMed Central Journals Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Cancer Cell activation Cell Cycle Colleges & universities Councils Deoxyribonucleic acid DNA DNA binding proteins DNA damage DNA Repair DNA Replication DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Enzymes Genetic transcription Genetics Genomes Genomic Instability Genomics Humans Kinases Oligonucleotides - genetics Oligonucleotides - metabolism Polypeptides Protein binding Proteins Review Telomerase Telomeres |
title | Human single-stranded DNA binding proteins are essential for maintaining genomic stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20single-stranded%20DNA%20binding%20proteins%20are%20essential%20for%20maintaining%20genomic%20stability&rft.jtitle=BMC%20molecular%20biology&rft.au=Ashton,%20Nicholas%20W&rft.date=2013-04-01&rft.volume=14&rft.issue=1&rft.spage=9&rft.epage=9&rft.pages=9-9&rft.artnum=9&rft.issn=1471-2199&rft.eissn=1471-2199&rft_id=info:doi/10.1186/1471-2199-14-9&rft_dat=%3Cgale_pubme%3EA534571901%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1327502712&rft_id=info:pmid/23548139&rft_galeid=A534571901&rfr_iscdi=true |