Separate roles of PKA and EPAC in renal function unraveled by the optogenetic control of cAMP levels in vivo

Cyclic AMP (cAMP) is a ubiquitous second messenger that regulates a variety of essential processes in diverse cell types, functioning via cAMP-dependent effectors such as protein kinase A (PKA) and/or exchange proteins directly activated by cAMP (EPAC). In an intact tissue it is difficult to separat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2013-02, Vol.126 (Pt 3), p.778-788
Hauptverfasser: Efetova, Marina, Petereit, Linda, Rosiewicz, Kamil, Overend, Gayle, Haußig, Florian, Hovemann, Bernhard T, Cabrero, Pablo, Dow, Julian A T, Schwärzel, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 788
container_issue Pt 3
container_start_page 778
container_title Journal of cell science
container_volume 126
creator Efetova, Marina
Petereit, Linda
Rosiewicz, Kamil
Overend, Gayle
Haußig, Florian
Hovemann, Bernhard T
Cabrero, Pablo
Dow, Julian A T
Schwärzel, Martin
description Cyclic AMP (cAMP) is a ubiquitous second messenger that regulates a variety of essential processes in diverse cell types, functioning via cAMP-dependent effectors such as protein kinase A (PKA) and/or exchange proteins directly activated by cAMP (EPAC). In an intact tissue it is difficult to separate the contribution of each cAMP effector in a particular cell type using genetic or pharmacological approaches alone. We, therefore, utilized optogenetics to overcome the difficulties associated with examining a multicellular tissue. The transgenic photoactive adenylyl cyclase bPAC can be activated to rapidly and reversibly generate cAMP pulses in a cell-type-specific manner. This optogenetic approach to cAMP manipulation was validated in vivo using GAL4-driven UAS-bPAC in a simple epithelium, the Drosophila renal (Malpighian) tubules. As bPAC was expressed under the control of cell-type-specific promoters, each cAMP signal could be directed to either the stellate or principal cells, the two major cell types of the Drosophila renal tubule. By combining the bPAC transgene with genetic and pharmacological manipulation of either PKA or EPAC it was possible to investigate the functional impact of PKA and EPAC independently of each other. The results of this investigation suggest that both PKA and EPAC are involved in cAMP sensing, but are engaged in very different downstream physiological functions in each cell type: PKA is necessary for basal secretion in principal cells only, and for stimulated fluid secretion in stellate cells only. By contrast, EPAC is important in stimulated fluid secretion in both cell types. We propose that such optogenetic control of cellular cAMP levels can be applied to other systems, for example the heart or the central nervous system, to investigate the physiological impact of cAMP-dependent signaling pathways with unprecedented precision.
doi_str_mv 10.1242/jcs.114140
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3619808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1325331650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-3210dad53783643a5dc7c8ab00b5ebb39a9bfc6b9a11bd2d6b92d26719df9e783</originalsourceid><addsrcrecordid>eNpVkU1rGzEQhkVoiJ00l_yAomMpbKqP3ZV1KRiTJqUOMTQ5C33MJhtkyZV2Df73kXFi2pMk5tEzw7wIXVFyTVnNvr_afE1pTWtygqa0FqKSlItPaEoIo5VsOJ-g85xfCSGCSXGGJoyztha8mSL_BzY66QFwih4yjh1e_Z5jHRy-Wc0XuA84QdAed2OwQx8DHkPSW_DgsNnh4QVw3AzxGQIMvcU2hqGI9ho7v19hDwXNe8u238bP6LTTPsPl-3mBnn7ePC7uquXD7a_FfFlZLmZDxRklTrumPHhbc904K-xMG0JMA8ZwqaXpbGukptQ45sqNOdYKKl0noXy6QD8O3s1o1uAslKG0V5vUr3Xaqah79X8l9C_qOW4Vb6mckb3g67sgxb8j5EGt-2zBex0gjllRzspWaduQgn47oDbFnBN0xzaUqH08qsSjDvEU-Mu_gx3Rjzz4G-XMjGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325331650</pqid></control><display><type>article</type><title>Separate roles of PKA and EPAC in renal function unraveled by the optogenetic control of cAMP levels in vivo</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Efetova, Marina ; Petereit, Linda ; Rosiewicz, Kamil ; Overend, Gayle ; Haußig, Florian ; Hovemann, Bernhard T ; Cabrero, Pablo ; Dow, Julian A T ; Schwärzel, Martin</creator><creatorcontrib>Efetova, Marina ; Petereit, Linda ; Rosiewicz, Kamil ; Overend, Gayle ; Haußig, Florian ; Hovemann, Bernhard T ; Cabrero, Pablo ; Dow, Julian A T ; Schwärzel, Martin</creatorcontrib><description>Cyclic AMP (cAMP) is a ubiquitous second messenger that regulates a variety of essential processes in diverse cell types, functioning via cAMP-dependent effectors such as protein kinase A (PKA) and/or exchange proteins directly activated by cAMP (EPAC). In an intact tissue it is difficult to separate the contribution of each cAMP effector in a particular cell type using genetic or pharmacological approaches alone. We, therefore, utilized optogenetics to overcome the difficulties associated with examining a multicellular tissue. The transgenic photoactive adenylyl cyclase bPAC can be activated to rapidly and reversibly generate cAMP pulses in a cell-type-specific manner. This optogenetic approach to cAMP manipulation was validated in vivo using GAL4-driven UAS-bPAC in a simple epithelium, the Drosophila renal (Malpighian) tubules. As bPAC was expressed under the control of cell-type-specific promoters, each cAMP signal could be directed to either the stellate or principal cells, the two major cell types of the Drosophila renal tubule. By combining the bPAC transgene with genetic and pharmacological manipulation of either PKA or EPAC it was possible to investigate the functional impact of PKA and EPAC independently of each other. The results of this investigation suggest that both PKA and EPAC are involved in cAMP sensing, but are engaged in very different downstream physiological functions in each cell type: PKA is necessary for basal secretion in principal cells only, and for stimulated fluid secretion in stellate cells only. By contrast, EPAC is important in stimulated fluid secretion in both cell types. We propose that such optogenetic control of cellular cAMP levels can be applied to other systems, for example the heart or the central nervous system, to investigate the physiological impact of cAMP-dependent signaling pathways with unprecedented precision.</description><identifier>ISSN: 0021-9533</identifier><identifier>EISSN: 1477-9137</identifier><identifier>DOI: 10.1242/jcs.114140</identifier><identifier>PMID: 23264735</identifier><language>eng</language><publisher>England: The Company of Biologists</publisher><subject>Adenylyl Cyclases - genetics ; Adenylyl Cyclases - metabolism ; Animals ; Animals, Genetically Modified ; Cell Communication ; Cell Line ; Cyclic AMP - metabolism ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Drosophila melanogaster - physiology ; Drosophila Proteins - metabolism ; Epithelial Cells - metabolism ; Guanine Nucleotide Exchange Factors - metabolism ; Malpighian Tubules - physiology ; Malpighian Tubules - secretion ; Optogenetics ; Organ Specificity ; Signal Transduction</subject><ispartof>Journal of cell science, 2013-02, Vol.126 (Pt 3), p.778-788</ispartof><rights>2013. Published by The Company of Biologists Ltd 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-3210dad53783643a5dc7c8ab00b5ebb39a9bfc6b9a11bd2d6b92d26719df9e783</citedby><cites>FETCH-LOGICAL-c378t-3210dad53783643a5dc7c8ab00b5ebb39a9bfc6b9a11bd2d6b92d26719df9e783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3678,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23264735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Efetova, Marina</creatorcontrib><creatorcontrib>Petereit, Linda</creatorcontrib><creatorcontrib>Rosiewicz, Kamil</creatorcontrib><creatorcontrib>Overend, Gayle</creatorcontrib><creatorcontrib>Haußig, Florian</creatorcontrib><creatorcontrib>Hovemann, Bernhard T</creatorcontrib><creatorcontrib>Cabrero, Pablo</creatorcontrib><creatorcontrib>Dow, Julian A T</creatorcontrib><creatorcontrib>Schwärzel, Martin</creatorcontrib><title>Separate roles of PKA and EPAC in renal function unraveled by the optogenetic control of cAMP levels in vivo</title><title>Journal of cell science</title><addtitle>J Cell Sci</addtitle><description>Cyclic AMP (cAMP) is a ubiquitous second messenger that regulates a variety of essential processes in diverse cell types, functioning via cAMP-dependent effectors such as protein kinase A (PKA) and/or exchange proteins directly activated by cAMP (EPAC). In an intact tissue it is difficult to separate the contribution of each cAMP effector in a particular cell type using genetic or pharmacological approaches alone. We, therefore, utilized optogenetics to overcome the difficulties associated with examining a multicellular tissue. The transgenic photoactive adenylyl cyclase bPAC can be activated to rapidly and reversibly generate cAMP pulses in a cell-type-specific manner. This optogenetic approach to cAMP manipulation was validated in vivo using GAL4-driven UAS-bPAC in a simple epithelium, the Drosophila renal (Malpighian) tubules. As bPAC was expressed under the control of cell-type-specific promoters, each cAMP signal could be directed to either the stellate or principal cells, the two major cell types of the Drosophila renal tubule. By combining the bPAC transgene with genetic and pharmacological manipulation of either PKA or EPAC it was possible to investigate the functional impact of PKA and EPAC independently of each other. The results of this investigation suggest that both PKA and EPAC are involved in cAMP sensing, but are engaged in very different downstream physiological functions in each cell type: PKA is necessary for basal secretion in principal cells only, and for stimulated fluid secretion in stellate cells only. By contrast, EPAC is important in stimulated fluid secretion in both cell types. We propose that such optogenetic control of cellular cAMP levels can be applied to other systems, for example the heart or the central nervous system, to investigate the physiological impact of cAMP-dependent signaling pathways with unprecedented precision.</description><subject>Adenylyl Cyclases - genetics</subject><subject>Adenylyl Cyclases - metabolism</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Cell Communication</subject><subject>Cell Line</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Drosophila melanogaster - physiology</subject><subject>Drosophila Proteins - metabolism</subject><subject>Epithelial Cells - metabolism</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>Malpighian Tubules - physiology</subject><subject>Malpighian Tubules - secretion</subject><subject>Optogenetics</subject><subject>Organ Specificity</subject><subject>Signal Transduction</subject><issn>0021-9533</issn><issn>1477-9137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1rGzEQhkVoiJ00l_yAomMpbKqP3ZV1KRiTJqUOMTQ5C33MJhtkyZV2Df73kXFi2pMk5tEzw7wIXVFyTVnNvr_afE1pTWtygqa0FqKSlItPaEoIo5VsOJ-g85xfCSGCSXGGJoyztha8mSL_BzY66QFwih4yjh1e_Z5jHRy-Wc0XuA84QdAed2OwQx8DHkPSW_DgsNnh4QVw3AzxGQIMvcU2hqGI9ho7v19hDwXNe8u238bP6LTTPsPl-3mBnn7ePC7uquXD7a_FfFlZLmZDxRklTrumPHhbc904K-xMG0JMA8ZwqaXpbGukptQ45sqNOdYKKl0noXy6QD8O3s1o1uAslKG0V5vUr3Xaqah79X8l9C_qOW4Vb6mckb3g67sgxb8j5EGt-2zBex0gjllRzspWaduQgn47oDbFnBN0xzaUqH08qsSjDvEU-Mu_gx3Rjzz4G-XMjGg</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Efetova, Marina</creator><creator>Petereit, Linda</creator><creator>Rosiewicz, Kamil</creator><creator>Overend, Gayle</creator><creator>Haußig, Florian</creator><creator>Hovemann, Bernhard T</creator><creator>Cabrero, Pablo</creator><creator>Dow, Julian A T</creator><creator>Schwärzel, Martin</creator><general>The Company of Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130201</creationdate><title>Separate roles of PKA and EPAC in renal function unraveled by the optogenetic control of cAMP levels in vivo</title><author>Efetova, Marina ; Petereit, Linda ; Rosiewicz, Kamil ; Overend, Gayle ; Haußig, Florian ; Hovemann, Bernhard T ; Cabrero, Pablo ; Dow, Julian A T ; Schwärzel, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-3210dad53783643a5dc7c8ab00b5ebb39a9bfc6b9a11bd2d6b92d26719df9e783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenylyl Cyclases - genetics</topic><topic>Adenylyl Cyclases - metabolism</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Cell Communication</topic><topic>Cell Line</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Drosophila melanogaster - physiology</topic><topic>Drosophila Proteins - metabolism</topic><topic>Epithelial Cells - metabolism</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>Malpighian Tubules - physiology</topic><topic>Malpighian Tubules - secretion</topic><topic>Optogenetics</topic><topic>Organ Specificity</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efetova, Marina</creatorcontrib><creatorcontrib>Petereit, Linda</creatorcontrib><creatorcontrib>Rosiewicz, Kamil</creatorcontrib><creatorcontrib>Overend, Gayle</creatorcontrib><creatorcontrib>Haußig, Florian</creatorcontrib><creatorcontrib>Hovemann, Bernhard T</creatorcontrib><creatorcontrib>Cabrero, Pablo</creatorcontrib><creatorcontrib>Dow, Julian A T</creatorcontrib><creatorcontrib>Schwärzel, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cell science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efetova, Marina</au><au>Petereit, Linda</au><au>Rosiewicz, Kamil</au><au>Overend, Gayle</au><au>Haußig, Florian</au><au>Hovemann, Bernhard T</au><au>Cabrero, Pablo</au><au>Dow, Julian A T</au><au>Schwärzel, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separate roles of PKA and EPAC in renal function unraveled by the optogenetic control of cAMP levels in vivo</atitle><jtitle>Journal of cell science</jtitle><addtitle>J Cell Sci</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>126</volume><issue>Pt 3</issue><spage>778</spage><epage>788</epage><pages>778-788</pages><issn>0021-9533</issn><eissn>1477-9137</eissn><abstract>Cyclic AMP (cAMP) is a ubiquitous second messenger that regulates a variety of essential processes in diverse cell types, functioning via cAMP-dependent effectors such as protein kinase A (PKA) and/or exchange proteins directly activated by cAMP (EPAC). In an intact tissue it is difficult to separate the contribution of each cAMP effector in a particular cell type using genetic or pharmacological approaches alone. We, therefore, utilized optogenetics to overcome the difficulties associated with examining a multicellular tissue. The transgenic photoactive adenylyl cyclase bPAC can be activated to rapidly and reversibly generate cAMP pulses in a cell-type-specific manner. This optogenetic approach to cAMP manipulation was validated in vivo using GAL4-driven UAS-bPAC in a simple epithelium, the Drosophila renal (Malpighian) tubules. As bPAC was expressed under the control of cell-type-specific promoters, each cAMP signal could be directed to either the stellate or principal cells, the two major cell types of the Drosophila renal tubule. By combining the bPAC transgene with genetic and pharmacological manipulation of either PKA or EPAC it was possible to investigate the functional impact of PKA and EPAC independently of each other. The results of this investigation suggest that both PKA and EPAC are involved in cAMP sensing, but are engaged in very different downstream physiological functions in each cell type: PKA is necessary for basal secretion in principal cells only, and for stimulated fluid secretion in stellate cells only. By contrast, EPAC is important in stimulated fluid secretion in both cell types. We propose that such optogenetic control of cellular cAMP levels can be applied to other systems, for example the heart or the central nervous system, to investigate the physiological impact of cAMP-dependent signaling pathways with unprecedented precision.</abstract><cop>England</cop><pub>The Company of Biologists</pub><pmid>23264735</pmid><doi>10.1242/jcs.114140</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9533
ispartof Journal of cell science, 2013-02, Vol.126 (Pt 3), p.778-788
issn 0021-9533
1477-9137
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3619808
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists
subjects Adenylyl Cyclases - genetics
Adenylyl Cyclases - metabolism
Animals
Animals, Genetically Modified
Cell Communication
Cell Line
Cyclic AMP - metabolism
Cyclic AMP-Dependent Protein Kinases - metabolism
Drosophila melanogaster - physiology
Drosophila Proteins - metabolism
Epithelial Cells - metabolism
Guanine Nucleotide Exchange Factors - metabolism
Malpighian Tubules - physiology
Malpighian Tubules - secretion
Optogenetics
Organ Specificity
Signal Transduction
title Separate roles of PKA and EPAC in renal function unraveled by the optogenetic control of cAMP levels in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separate%20roles%20of%20PKA%20and%20EPAC%20in%20renal%20function%20unraveled%20by%20the%20optogenetic%20control%20of%20cAMP%20levels%20in%20vivo&rft.jtitle=Journal%20of%20cell%20science&rft.au=Efetova,%20Marina&rft.date=2013-02-01&rft.volume=126&rft.issue=Pt%203&rft.spage=778&rft.epage=788&rft.pages=778-788&rft.issn=0021-9533&rft.eissn=1477-9137&rft_id=info:doi/10.1242/jcs.114140&rft_dat=%3Cproquest_pubme%3E1325331650%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325331650&rft_id=info:pmid/23264735&rfr_iscdi=true