Computational approaches for modeling regulatory cellular networks
Cellular components interact with each other to form networks that process information and evoke biological responses. A deep understanding of the behavior of these networks requires the development and analysis of mathematical models. In this article, different types of mathematical representations...
Gespeichert in:
Veröffentlicht in: | Trends in cell biology 2004-12, Vol.14 (12), p.661-669 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 669 |
---|---|
container_issue | 12 |
container_start_page | 661 |
container_title | Trends in cell biology |
container_volume | 14 |
creator | Eungdamrong, Narat J. Iyengar, Ravi |
description | Cellular components interact with each other to form networks that process information and evoke biological responses. A deep understanding of the behavior of these networks requires the development and analysis of mathematical models. In this article, different types of mathematical representations for modeling signaling networks are described, and the advantages and disadvantages of each type are discussed. Two experimentally well-studied signaling networks are then used as examples to illustrate the insight that could be gained through modeling. Finally, the modeling approach is expanded to describe how signaling networks might regulate cellular machines and evoke phenotypic behaviors. |
doi_str_mv | 10.1016/j.tcb.2004.10.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3619405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0962892404002867</els_id><sourcerecordid>67104649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-3ddd59f94d1b577b4861757444402cf8dfb2cc270a64686e63ca49d2a77da3ac3</originalsourceid><addsrcrecordid>eNp9kEFv2yAYhtG0akmz_YBdJp92cwoYg61Kk9ZoaytF6qU9IwyfEzLbeIBT5d-XKNG6XsoFPni-F3gQ-krwkmDCr3bLqJslxZileomx-IDmpBJ1XuCq-ojmuOY0r2rKZugyhB1OBCXFJzQjZckZZnSOblauH6eoonWD6jI1jt4pvYWQtc5nvTPQ2WGTedhMnYrOHzINXZfWPhsgPjv_J3xGF63qAnw5zwv09PvX4-ouXz_c3q9-rnPNmIh5YYwp67ZmhjSlEA2rOBGlYGlgqtvKtA3VmgqsOOMVB15oxWpDlRBGFUoXC_TjlDtOTQ9GwxC96uToba_8QTpl5duTwW7lxu1lwUnNcJkCvp8DvPs7QYiyt-H4HTWAm4LkgmDGWZ1AcgK1dyF4aP9dQrA8mpc7mczLo_njVvKaer79_7rXjrPqBFyfAEiO9ha8DNrCoMFYDzpK4-w78S9YqZYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67104649</pqid></control><display><type>article</type><title>Computational approaches for modeling regulatory cellular networks</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Eungdamrong, Narat J. ; Iyengar, Ravi</creator><creatorcontrib>Eungdamrong, Narat J. ; Iyengar, Ravi</creatorcontrib><description>Cellular components interact with each other to form networks that process information and evoke biological responses. A deep understanding of the behavior of these networks requires the development and analysis of mathematical models. In this article, different types of mathematical representations for modeling signaling networks are described, and the advantages and disadvantages of each type are discussed. Two experimentally well-studied signaling networks are then used as examples to illustrate the insight that could be gained through modeling. Finally, the modeling approach is expanded to describe how signaling networks might regulate cellular machines and evoke phenotypic behaviors.</description><identifier>ISSN: 0962-8924</identifier><identifier>EISSN: 1879-3088</identifier><identifier>DOI: 10.1016/j.tcb.2004.10.007</identifier><identifier>PMID: 15564042</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cells - metabolism ; Computational Biology - methods ; Humans ; Kinetics ; Models, Biological ; Phenotype ; Signal Transduction ; Systems Theory</subject><ispartof>Trends in cell biology, 2004-12, Vol.14 (12), p.661-669</ispartof><rights>2004 Elsevier Ltd</rights><rights>2004 Elsevier Ltd. All rights reserved 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-3ddd59f94d1b577b4861757444402cf8dfb2cc270a64686e63ca49d2a77da3ac3</citedby><cites>FETCH-LOGICAL-c447t-3ddd59f94d1b577b4861757444402cf8dfb2cc270a64686e63ca49d2a77da3ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0962892404002867$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15564042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eungdamrong, Narat J.</creatorcontrib><creatorcontrib>Iyengar, Ravi</creatorcontrib><title>Computational approaches for modeling regulatory cellular networks</title><title>Trends in cell biology</title><addtitle>Trends Cell Biol</addtitle><description>Cellular components interact with each other to form networks that process information and evoke biological responses. A deep understanding of the behavior of these networks requires the development and analysis of mathematical models. In this article, different types of mathematical representations for modeling signaling networks are described, and the advantages and disadvantages of each type are discussed. Two experimentally well-studied signaling networks are then used as examples to illustrate the insight that could be gained through modeling. Finally, the modeling approach is expanded to describe how signaling networks might regulate cellular machines and evoke phenotypic behaviors.</description><subject>Animals</subject><subject>Cells - metabolism</subject><subject>Computational Biology - methods</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Models, Biological</subject><subject>Phenotype</subject><subject>Signal Transduction</subject><subject>Systems Theory</subject><issn>0962-8924</issn><issn>1879-3088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFv2yAYhtG0akmz_YBdJp92cwoYg61Kk9ZoaytF6qU9IwyfEzLbeIBT5d-XKNG6XsoFPni-F3gQ-krwkmDCr3bLqJslxZileomx-IDmpBJ1XuCq-ojmuOY0r2rKZugyhB1OBCXFJzQjZckZZnSOblauH6eoonWD6jI1jt4pvYWQtc5nvTPQ2WGTedhMnYrOHzINXZfWPhsgPjv_J3xGF63qAnw5zwv09PvX4-ouXz_c3q9-rnPNmIh5YYwp67ZmhjSlEA2rOBGlYGlgqtvKtA3VmgqsOOMVB15oxWpDlRBGFUoXC_TjlDtOTQ9GwxC96uToba_8QTpl5duTwW7lxu1lwUnNcJkCvp8DvPs7QYiyt-H4HTWAm4LkgmDGWZ1AcgK1dyF4aP9dQrA8mpc7mczLo_njVvKaer79_7rXjrPqBFyfAEiO9ha8DNrCoMFYDzpK4-w78S9YqZYw</recordid><startdate>200412</startdate><enddate>200412</enddate><creator>Eungdamrong, Narat J.</creator><creator>Iyengar, Ravi</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200412</creationdate><title>Computational approaches for modeling regulatory cellular networks</title><author>Eungdamrong, Narat J. ; Iyengar, Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-3ddd59f94d1b577b4861757444402cf8dfb2cc270a64686e63ca49d2a77da3ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Cells - metabolism</topic><topic>Computational Biology - methods</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Models, Biological</topic><topic>Phenotype</topic><topic>Signal Transduction</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eungdamrong, Narat J.</creatorcontrib><creatorcontrib>Iyengar, Ravi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eungdamrong, Narat J.</au><au>Iyengar, Ravi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational approaches for modeling regulatory cellular networks</atitle><jtitle>Trends in cell biology</jtitle><addtitle>Trends Cell Biol</addtitle><date>2004-12</date><risdate>2004</risdate><volume>14</volume><issue>12</issue><spage>661</spage><epage>669</epage><pages>661-669</pages><issn>0962-8924</issn><eissn>1879-3088</eissn><abstract>Cellular components interact with each other to form networks that process information and evoke biological responses. A deep understanding of the behavior of these networks requires the development and analysis of mathematical models. In this article, different types of mathematical representations for modeling signaling networks are described, and the advantages and disadvantages of each type are discussed. Two experimentally well-studied signaling networks are then used as examples to illustrate the insight that could be gained through modeling. Finally, the modeling approach is expanded to describe how signaling networks might regulate cellular machines and evoke phenotypic behaviors.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>15564042</pmid><doi>10.1016/j.tcb.2004.10.007</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8924 |
ispartof | Trends in cell biology, 2004-12, Vol.14 (12), p.661-669 |
issn | 0962-8924 1879-3088 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3619405 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Cells - metabolism Computational Biology - methods Humans Kinetics Models, Biological Phenotype Signal Transduction Systems Theory |
title | Computational approaches for modeling regulatory cellular networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20approaches%20for%20modeling%20regulatory%20cellular%20networks&rft.jtitle=Trends%20in%20cell%20biology&rft.au=Eungdamrong,%20Narat%20J.&rft.date=2004-12&rft.volume=14&rft.issue=12&rft.spage=661&rft.epage=669&rft.pages=661-669&rft.issn=0962-8924&rft.eissn=1879-3088&rft_id=info:doi/10.1016/j.tcb.2004.10.007&rft_dat=%3Cproquest_pubme%3E67104649%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67104649&rft_id=info:pmid/15564042&rft_els_id=S0962892404002867&rfr_iscdi=true |