Computational approaches for modeling regulatory cellular networks

Cellular components interact with each other to form networks that process information and evoke biological responses. A deep understanding of the behavior of these networks requires the development and analysis of mathematical models. In this article, different types of mathematical representations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in cell biology 2004-12, Vol.14 (12), p.661-669
Hauptverfasser: Eungdamrong, Narat J., Iyengar, Ravi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 669
container_issue 12
container_start_page 661
container_title Trends in cell biology
container_volume 14
creator Eungdamrong, Narat J.
Iyengar, Ravi
description Cellular components interact with each other to form networks that process information and evoke biological responses. A deep understanding of the behavior of these networks requires the development and analysis of mathematical models. In this article, different types of mathematical representations for modeling signaling networks are described, and the advantages and disadvantages of each type are discussed. Two experimentally well-studied signaling networks are then used as examples to illustrate the insight that could be gained through modeling. Finally, the modeling approach is expanded to describe how signaling networks might regulate cellular machines and evoke phenotypic behaviors.
doi_str_mv 10.1016/j.tcb.2004.10.007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3619405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0962892404002867</els_id><sourcerecordid>67104649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-3ddd59f94d1b577b4861757444402cf8dfb2cc270a64686e63ca49d2a77da3ac3</originalsourceid><addsrcrecordid>eNp9kEFv2yAYhtG0akmz_YBdJp92cwoYg61Kk9ZoaytF6qU9IwyfEzLbeIBT5d-XKNG6XsoFPni-F3gQ-krwkmDCr3bLqJslxZileomx-IDmpBJ1XuCq-ojmuOY0r2rKZugyhB1OBCXFJzQjZckZZnSOblauH6eoonWD6jI1jt4pvYWQtc5nvTPQ2WGTedhMnYrOHzINXZfWPhsgPjv_J3xGF63qAnw5zwv09PvX4-ouXz_c3q9-rnPNmIh5YYwp67ZmhjSlEA2rOBGlYGlgqtvKtA3VmgqsOOMVB15oxWpDlRBGFUoXC_TjlDtOTQ9GwxC96uToba_8QTpl5duTwW7lxu1lwUnNcJkCvp8DvPs7QYiyt-H4HTWAm4LkgmDGWZ1AcgK1dyF4aP9dQrA8mpc7mczLo_njVvKaer79_7rXjrPqBFyfAEiO9ha8DNrCoMFYDzpK4-w78S9YqZYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67104649</pqid></control><display><type>article</type><title>Computational approaches for modeling regulatory cellular networks</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Eungdamrong, Narat J. ; Iyengar, Ravi</creator><creatorcontrib>Eungdamrong, Narat J. ; Iyengar, Ravi</creatorcontrib><description>Cellular components interact with each other to form networks that process information and evoke biological responses. A deep understanding of the behavior of these networks requires the development and analysis of mathematical models. In this article, different types of mathematical representations for modeling signaling networks are described, and the advantages and disadvantages of each type are discussed. Two experimentally well-studied signaling networks are then used as examples to illustrate the insight that could be gained through modeling. Finally, the modeling approach is expanded to describe how signaling networks might regulate cellular machines and evoke phenotypic behaviors.</description><identifier>ISSN: 0962-8924</identifier><identifier>EISSN: 1879-3088</identifier><identifier>DOI: 10.1016/j.tcb.2004.10.007</identifier><identifier>PMID: 15564042</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cells - metabolism ; Computational Biology - methods ; Humans ; Kinetics ; Models, Biological ; Phenotype ; Signal Transduction ; Systems Theory</subject><ispartof>Trends in cell biology, 2004-12, Vol.14 (12), p.661-669</ispartof><rights>2004 Elsevier Ltd</rights><rights>2004 Elsevier Ltd. All rights reserved 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-3ddd59f94d1b577b4861757444402cf8dfb2cc270a64686e63ca49d2a77da3ac3</citedby><cites>FETCH-LOGICAL-c447t-3ddd59f94d1b577b4861757444402cf8dfb2cc270a64686e63ca49d2a77da3ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0962892404002867$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15564042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eungdamrong, Narat J.</creatorcontrib><creatorcontrib>Iyengar, Ravi</creatorcontrib><title>Computational approaches for modeling regulatory cellular networks</title><title>Trends in cell biology</title><addtitle>Trends Cell Biol</addtitle><description>Cellular components interact with each other to form networks that process information and evoke biological responses. A deep understanding of the behavior of these networks requires the development and analysis of mathematical models. In this article, different types of mathematical representations for modeling signaling networks are described, and the advantages and disadvantages of each type are discussed. Two experimentally well-studied signaling networks are then used as examples to illustrate the insight that could be gained through modeling. Finally, the modeling approach is expanded to describe how signaling networks might regulate cellular machines and evoke phenotypic behaviors.</description><subject>Animals</subject><subject>Cells - metabolism</subject><subject>Computational Biology - methods</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Models, Biological</subject><subject>Phenotype</subject><subject>Signal Transduction</subject><subject>Systems Theory</subject><issn>0962-8924</issn><issn>1879-3088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFv2yAYhtG0akmz_YBdJp92cwoYg61Kk9ZoaytF6qU9IwyfEzLbeIBT5d-XKNG6XsoFPni-F3gQ-krwkmDCr3bLqJslxZileomx-IDmpBJ1XuCq-ojmuOY0r2rKZugyhB1OBCXFJzQjZckZZnSOblauH6eoonWD6jI1jt4pvYWQtc5nvTPQ2WGTedhMnYrOHzINXZfWPhsgPjv_J3xGF63qAnw5zwv09PvX4-ouXz_c3q9-rnPNmIh5YYwp67ZmhjSlEA2rOBGlYGlgqtvKtA3VmgqsOOMVB15oxWpDlRBGFUoXC_TjlDtOTQ9GwxC96uToba_8QTpl5duTwW7lxu1lwUnNcJkCvp8DvPs7QYiyt-H4HTWAm4LkgmDGWZ1AcgK1dyF4aP9dQrA8mpc7mczLo_njVvKaer79_7rXjrPqBFyfAEiO9ha8DNrCoMFYDzpK4-w78S9YqZYw</recordid><startdate>200412</startdate><enddate>200412</enddate><creator>Eungdamrong, Narat J.</creator><creator>Iyengar, Ravi</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200412</creationdate><title>Computational approaches for modeling regulatory cellular networks</title><author>Eungdamrong, Narat J. ; Iyengar, Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-3ddd59f94d1b577b4861757444402cf8dfb2cc270a64686e63ca49d2a77da3ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Cells - metabolism</topic><topic>Computational Biology - methods</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Models, Biological</topic><topic>Phenotype</topic><topic>Signal Transduction</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eungdamrong, Narat J.</creatorcontrib><creatorcontrib>Iyengar, Ravi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eungdamrong, Narat J.</au><au>Iyengar, Ravi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational approaches for modeling regulatory cellular networks</atitle><jtitle>Trends in cell biology</jtitle><addtitle>Trends Cell Biol</addtitle><date>2004-12</date><risdate>2004</risdate><volume>14</volume><issue>12</issue><spage>661</spage><epage>669</epage><pages>661-669</pages><issn>0962-8924</issn><eissn>1879-3088</eissn><abstract>Cellular components interact with each other to form networks that process information and evoke biological responses. A deep understanding of the behavior of these networks requires the development and analysis of mathematical models. In this article, different types of mathematical representations for modeling signaling networks are described, and the advantages and disadvantages of each type are discussed. Two experimentally well-studied signaling networks are then used as examples to illustrate the insight that could be gained through modeling. Finally, the modeling approach is expanded to describe how signaling networks might regulate cellular machines and evoke phenotypic behaviors.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>15564042</pmid><doi>10.1016/j.tcb.2004.10.007</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8924
ispartof Trends in cell biology, 2004-12, Vol.14 (12), p.661-669
issn 0962-8924
1879-3088
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3619405
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Cells - metabolism
Computational Biology - methods
Humans
Kinetics
Models, Biological
Phenotype
Signal Transduction
Systems Theory
title Computational approaches for modeling regulatory cellular networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20approaches%20for%20modeling%20regulatory%20cellular%20networks&rft.jtitle=Trends%20in%20cell%20biology&rft.au=Eungdamrong,%20Narat%20J.&rft.date=2004-12&rft.volume=14&rft.issue=12&rft.spage=661&rft.epage=669&rft.pages=661-669&rft.issn=0962-8924&rft.eissn=1879-3088&rft_id=info:doi/10.1016/j.tcb.2004.10.007&rft_dat=%3Cproquest_pubme%3E67104649%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67104649&rft_id=info:pmid/15564042&rft_els_id=S0962892404002867&rfr_iscdi=true