Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure−Activity Relationships
Several antifolates, including trimethoprim (TMP) and a series of propargyl-linked analogues, bind dihydrofolate reductase from Bacillus anthracis (BaDHFR) with lower affinity than is typical in other bacterial species. To guide lead optimization for BaDHFR, we explored a new approach to determine s...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2010-10, Vol.53 (20), p.7327-7336 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7336 |
---|---|
container_issue | 20 |
container_start_page | 7327 |
container_title | Journal of medicinal chemistry |
container_volume | 53 |
creator | Beierlein, Jennifer M Karri, Nanda G Anderson, Amy C |
description | Several antifolates, including trimethoprim (TMP) and a series of propargyl-linked analogues, bind dihydrofolate reductase from Bacillus anthracis (BaDHFR) with lower affinity than is typical in other bacterial species. To guide lead optimization for BaDHFR, we explored a new approach to determine structure−activity relationships whereby the enzyme is altered and the analogues remain constant, essentially reversing the standard experimental design. Active site mutants of the enzyme, Ba(F96I)DHFR and Ba(Y102F)DHFR, were created and evaluated with enzyme inhibition assays and crystal structures. The affinities of the antifolates increase up to 60-fold with the Y102F mutant, suggesting that interactions with Tyr 102 are critical for affinity. Crystal structures of the enzymes bound to TMP and propargyl-linked inhibitors reveal the basis of TMP resistance and illuminate the influence of Tyr 102 on the lipophilic linker between the pyrimidine and aryl rings. Two new inhibitors test and validate these conclusions and show the value of the technique for providing new directions during lead optimization. |
doi_str_mv | 10.1021/jm100727t |
format | Article |
fullrecord | <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3618964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a653025961</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-e7328fd603326f506d4050d09bb029cae429083504ff32952e3014f27d90fc683</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EouWx4AdQNixYBMZjJ002SFCeEgiJxzpyY7t1lcaV7VT0D1jziXwJgUAFEqvx6B4fy5eQPQpHFJAeT2cUYICDsEb6NEGIeQZ8nfQBEGNMkfXIlvdTAGAU2SbpIWQZ5in2SXgSbqyCktFdE0QwtvaR1dGZKE1VNT4SdZi4dvHRuZkspbPaViKo6EHJpgzCq2hoa6nqr8NsXqmX6DG4Nmqcen99Oy2DWZiwbPmqs0_M3O-QDS0qr3a_5zZ5vrx4Gl7Ht_dXN8PT21hw4CFWA4aZlikwhqlOIJUcEpCQj0aAeSkUxxwylgDXmmGeoGJAucaBzEGXaca2yUnnnTejmZKlqoMTVTF3ZibcsrDCFH-T2kyKsV0ULKVZnvJWcNgJSme9d0qv7lIoPqsvVtW37P7vx1bkT9ctcNABovTF1Daubv_-j-gDfRiO8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure−Activity Relationships</title><source>MEDLINE</source><source>ACS Publications</source><creator>Beierlein, Jennifer M ; Karri, Nanda G ; Anderson, Amy C</creator><creatorcontrib>Beierlein, Jennifer M ; Karri, Nanda G ; Anderson, Amy C</creatorcontrib><description>Several antifolates, including trimethoprim (TMP) and a series of propargyl-linked analogues, bind dihydrofolate reductase from Bacillus anthracis (BaDHFR) with lower affinity than is typical in other bacterial species. To guide lead optimization for BaDHFR, we explored a new approach to determine structure−activity relationships whereby the enzyme is altered and the analogues remain constant, essentially reversing the standard experimental design. Active site mutants of the enzyme, Ba(F96I)DHFR and Ba(Y102F)DHFR, were created and evaluated with enzyme inhibition assays and crystal structures. The affinities of the antifolates increase up to 60-fold with the Y102F mutant, suggesting that interactions with Tyr 102 are critical for affinity. Crystal structures of the enzymes bound to TMP and propargyl-linked inhibitors reveal the basis of TMP resistance and illuminate the influence of Tyr 102 on the lipophilic linker between the pyrimidine and aryl rings. Two new inhibitors test and validate these conclusions and show the value of the technique for providing new directions during lead optimization.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/jm100727t</identifier><identifier>PMID: 20882962</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alkynes - chemical synthesis ; Alkynes - chemistry ; Amino Acid Sequence ; Anti-Bacterial Agents - chemical synthesis ; Anti-Bacterial Agents - chemistry ; Bacillus anthracis - enzymology ; Biphenyl Compounds - chemical synthesis ; Biphenyl Compounds - chemistry ; Catalytic Domain ; Crystallography, X-Ray ; Drug Resistance, Bacterial ; Folic Acid Antagonists - chemical synthesis ; Folic Acid Antagonists - chemistry ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Protein Binding ; Protein Conformation ; Pyrimidines - chemical synthesis ; Pyrimidines - chemistry ; Static Electricity ; Structure-Activity Relationship ; Tetrahydrofolate Dehydrogenase - chemistry ; Tetrahydrofolate Dehydrogenase - genetics</subject><ispartof>Journal of medicinal chemistry, 2010-10, Vol.53 (20), p.7327-7336</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-e7328fd603326f506d4050d09bb029cae429083504ff32952e3014f27d90fc683</citedby><cites>FETCH-LOGICAL-a404t-e7328fd603326f506d4050d09bb029cae429083504ff32952e3014f27d90fc683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jm100727t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jm100727t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,778,782,883,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20882962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beierlein, Jennifer M</creatorcontrib><creatorcontrib>Karri, Nanda G</creatorcontrib><creatorcontrib>Anderson, Amy C</creatorcontrib><title>Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure−Activity Relationships</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>Several antifolates, including trimethoprim (TMP) and a series of propargyl-linked analogues, bind dihydrofolate reductase from Bacillus anthracis (BaDHFR) with lower affinity than is typical in other bacterial species. To guide lead optimization for BaDHFR, we explored a new approach to determine structure−activity relationships whereby the enzyme is altered and the analogues remain constant, essentially reversing the standard experimental design. Active site mutants of the enzyme, Ba(F96I)DHFR and Ba(Y102F)DHFR, were created and evaluated with enzyme inhibition assays and crystal structures. The affinities of the antifolates increase up to 60-fold with the Y102F mutant, suggesting that interactions with Tyr 102 are critical for affinity. Crystal structures of the enzymes bound to TMP and propargyl-linked inhibitors reveal the basis of TMP resistance and illuminate the influence of Tyr 102 on the lipophilic linker between the pyrimidine and aryl rings. Two new inhibitors test and validate these conclusions and show the value of the technique for providing new directions during lead optimization.</description><subject>Alkynes - chemical synthesis</subject><subject>Alkynes - chemistry</subject><subject>Amino Acid Sequence</subject><subject>Anti-Bacterial Agents - chemical synthesis</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Bacillus anthracis - enzymology</subject><subject>Biphenyl Compounds - chemical synthesis</subject><subject>Biphenyl Compounds - chemistry</subject><subject>Catalytic Domain</subject><subject>Crystallography, X-Ray</subject><subject>Drug Resistance, Bacterial</subject><subject>Folic Acid Antagonists - chemical synthesis</subject><subject>Folic Acid Antagonists - chemistry</subject><subject>Hydrogen Bonding</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Pyrimidines - chemical synthesis</subject><subject>Pyrimidines - chemistry</subject><subject>Static Electricity</subject><subject>Structure-Activity Relationship</subject><subject>Tetrahydrofolate Dehydrogenase - chemistry</subject><subject>Tetrahydrofolate Dehydrogenase - genetics</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtOwzAQRS0EouWx4AdQNixYBMZjJ002SFCeEgiJxzpyY7t1lcaV7VT0D1jziXwJgUAFEqvx6B4fy5eQPQpHFJAeT2cUYICDsEb6NEGIeQZ8nfQBEGNMkfXIlvdTAGAU2SbpIWQZ5in2SXgSbqyCktFdE0QwtvaR1dGZKE1VNT4SdZi4dvHRuZkspbPaViKo6EHJpgzCq2hoa6nqr8NsXqmX6DG4Nmqcen99Oy2DWZiwbPmqs0_M3O-QDS0qr3a_5zZ5vrx4Gl7Ht_dXN8PT21hw4CFWA4aZlikwhqlOIJUcEpCQj0aAeSkUxxwylgDXmmGeoGJAucaBzEGXaca2yUnnnTejmZKlqoMTVTF3ZibcsrDCFH-T2kyKsV0ULKVZnvJWcNgJSme9d0qv7lIoPqsvVtW37P7vx1bkT9ctcNABovTF1Daubv_-j-gDfRiO8g</recordid><startdate>20101028</startdate><enddate>20101028</enddate><creator>Beierlein, Jennifer M</creator><creator>Karri, Nanda G</creator><creator>Anderson, Amy C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20101028</creationdate><title>Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure−Activity Relationships</title><author>Beierlein, Jennifer M ; Karri, Nanda G ; Anderson, Amy C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-e7328fd603326f506d4050d09bb029cae429083504ff32952e3014f27d90fc683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alkynes - chemical synthesis</topic><topic>Alkynes - chemistry</topic><topic>Amino Acid Sequence</topic><topic>Anti-Bacterial Agents - chemical synthesis</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Bacillus anthracis - enzymology</topic><topic>Biphenyl Compounds - chemical synthesis</topic><topic>Biphenyl Compounds - chemistry</topic><topic>Catalytic Domain</topic><topic>Crystallography, X-Ray</topic><topic>Drug Resistance, Bacterial</topic><topic>Folic Acid Antagonists - chemical synthesis</topic><topic>Folic Acid Antagonists - chemistry</topic><topic>Hydrogen Bonding</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Pyrimidines - chemical synthesis</topic><topic>Pyrimidines - chemistry</topic><topic>Static Electricity</topic><topic>Structure-Activity Relationship</topic><topic>Tetrahydrofolate Dehydrogenase - chemistry</topic><topic>Tetrahydrofolate Dehydrogenase - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beierlein, Jennifer M</creatorcontrib><creatorcontrib>Karri, Nanda G</creatorcontrib><creatorcontrib>Anderson, Amy C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beierlein, Jennifer M</au><au>Karri, Nanda G</au><au>Anderson, Amy C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure−Activity Relationships</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2010-10-28</date><risdate>2010</risdate><volume>53</volume><issue>20</issue><spage>7327</spage><epage>7336</epage><pages>7327-7336</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><abstract>Several antifolates, including trimethoprim (TMP) and a series of propargyl-linked analogues, bind dihydrofolate reductase from Bacillus anthracis (BaDHFR) with lower affinity than is typical in other bacterial species. To guide lead optimization for BaDHFR, we explored a new approach to determine structure−activity relationships whereby the enzyme is altered and the analogues remain constant, essentially reversing the standard experimental design. Active site mutants of the enzyme, Ba(F96I)DHFR and Ba(Y102F)DHFR, were created and evaluated with enzyme inhibition assays and crystal structures. The affinities of the antifolates increase up to 60-fold with the Y102F mutant, suggesting that interactions with Tyr 102 are critical for affinity. Crystal structures of the enzymes bound to TMP and propargyl-linked inhibitors reveal the basis of TMP resistance and illuminate the influence of Tyr 102 on the lipophilic linker between the pyrimidine and aryl rings. Two new inhibitors test and validate these conclusions and show the value of the technique for providing new directions during lead optimization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20882962</pmid><doi>10.1021/jm100727t</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2623 |
ispartof | Journal of medicinal chemistry, 2010-10, Vol.53 (20), p.7327-7336 |
issn | 0022-2623 1520-4804 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3618964 |
source | MEDLINE; ACS Publications |
subjects | Alkynes - chemical synthesis Alkynes - chemistry Amino Acid Sequence Anti-Bacterial Agents - chemical synthesis Anti-Bacterial Agents - chemistry Bacillus anthracis - enzymology Biphenyl Compounds - chemical synthesis Biphenyl Compounds - chemistry Catalytic Domain Crystallography, X-Ray Drug Resistance, Bacterial Folic Acid Antagonists - chemical synthesis Folic Acid Antagonists - chemistry Hydrogen Bonding Models, Molecular Molecular Sequence Data Mutagenesis, Site-Directed Mutation Protein Binding Protein Conformation Pyrimidines - chemical synthesis Pyrimidines - chemistry Static Electricity Structure-Activity Relationship Tetrahydrofolate Dehydrogenase - chemistry Tetrahydrofolate Dehydrogenase - genetics |
title | Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure−Activity Relationships |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20Mutations%20of%20Bacillus%20anthracis%20Dihydrofolate%20Reductase%20Condense%20Complex%20Structure%E2%88%92Activity%20Relationships&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Beierlein,%20Jennifer%20M&rft.date=2010-10-28&rft.volume=53&rft.issue=20&rft.spage=7327&rft.epage=7336&rft.pages=7327-7336&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/jm100727t&rft_dat=%3Cacs_pubme%3Ea653025961%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/20882962&rfr_iscdi=true |