Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure−Activity Relationships

Several antifolates, including trimethoprim (TMP) and a series of propargyl-linked analogues, bind dihydrofolate reductase from Bacillus anthracis (BaDHFR) with lower affinity than is typical in other bacterial species. To guide lead optimization for BaDHFR, we explored a new approach to determine s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2010-10, Vol.53 (20), p.7327-7336
Hauptverfasser: Beierlein, Jennifer M, Karri, Nanda G, Anderson, Amy C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7336
container_issue 20
container_start_page 7327
container_title Journal of medicinal chemistry
container_volume 53
creator Beierlein, Jennifer M
Karri, Nanda G
Anderson, Amy C
description Several antifolates, including trimethoprim (TMP) and a series of propargyl-linked analogues, bind dihydrofolate reductase from Bacillus anthracis (BaDHFR) with lower affinity than is typical in other bacterial species. To guide lead optimization for BaDHFR, we explored a new approach to determine structure−activity relationships whereby the enzyme is altered and the analogues remain constant, essentially reversing the standard experimental design. Active site mutants of the enzyme, Ba(F96I)DHFR and Ba(Y102F)DHFR, were created and evaluated with enzyme inhibition assays and crystal structures. The affinities of the antifolates increase up to 60-fold with the Y102F mutant, suggesting that interactions with Tyr 102 are critical for affinity. Crystal structures of the enzymes bound to TMP and propargyl-linked inhibitors reveal the basis of TMP resistance and illuminate the influence of Tyr 102 on the lipophilic linker between the pyrimidine and aryl rings. Two new inhibitors test and validate these conclusions and show the value of the technique for providing new directions during lead optimization.
doi_str_mv 10.1021/jm100727t
format Article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3618964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a653025961</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-e7328fd603326f506d4050d09bb029cae429083504ff32952e3014f27d90fc683</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EouWx4AdQNixYBMZjJ002SFCeEgiJxzpyY7t1lcaV7VT0D1jziXwJgUAFEqvx6B4fy5eQPQpHFJAeT2cUYICDsEb6NEGIeQZ8nfQBEGNMkfXIlvdTAGAU2SbpIWQZ5in2SXgSbqyCktFdE0QwtvaR1dGZKE1VNT4SdZi4dvHRuZkspbPaViKo6EHJpgzCq2hoa6nqr8NsXqmX6DG4Nmqcen99Oy2DWZiwbPmqs0_M3O-QDS0qr3a_5zZ5vrx4Gl7Ht_dXN8PT21hw4CFWA4aZlikwhqlOIJUcEpCQj0aAeSkUxxwylgDXmmGeoGJAucaBzEGXaca2yUnnnTejmZKlqoMTVTF3ZibcsrDCFH-T2kyKsV0ULKVZnvJWcNgJSme9d0qv7lIoPqsvVtW37P7vx1bkT9ctcNABovTF1Daubv_-j-gDfRiO8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure−Activity Relationships</title><source>MEDLINE</source><source>ACS Publications</source><creator>Beierlein, Jennifer M ; Karri, Nanda G ; Anderson, Amy C</creator><creatorcontrib>Beierlein, Jennifer M ; Karri, Nanda G ; Anderson, Amy C</creatorcontrib><description>Several antifolates, including trimethoprim (TMP) and a series of propargyl-linked analogues, bind dihydrofolate reductase from Bacillus anthracis (BaDHFR) with lower affinity than is typical in other bacterial species. To guide lead optimization for BaDHFR, we explored a new approach to determine structure−activity relationships whereby the enzyme is altered and the analogues remain constant, essentially reversing the standard experimental design. Active site mutants of the enzyme, Ba(F96I)DHFR and Ba(Y102F)DHFR, were created and evaluated with enzyme inhibition assays and crystal structures. The affinities of the antifolates increase up to 60-fold with the Y102F mutant, suggesting that interactions with Tyr 102 are critical for affinity. Crystal structures of the enzymes bound to TMP and propargyl-linked inhibitors reveal the basis of TMP resistance and illuminate the influence of Tyr 102 on the lipophilic linker between the pyrimidine and aryl rings. Two new inhibitors test and validate these conclusions and show the value of the technique for providing new directions during lead optimization.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/jm100727t</identifier><identifier>PMID: 20882962</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alkynes - chemical synthesis ; Alkynes - chemistry ; Amino Acid Sequence ; Anti-Bacterial Agents - chemical synthesis ; Anti-Bacterial Agents - chemistry ; Bacillus anthracis - enzymology ; Biphenyl Compounds - chemical synthesis ; Biphenyl Compounds - chemistry ; Catalytic Domain ; Crystallography, X-Ray ; Drug Resistance, Bacterial ; Folic Acid Antagonists - chemical synthesis ; Folic Acid Antagonists - chemistry ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Protein Binding ; Protein Conformation ; Pyrimidines - chemical synthesis ; Pyrimidines - chemistry ; Static Electricity ; Structure-Activity Relationship ; Tetrahydrofolate Dehydrogenase - chemistry ; Tetrahydrofolate Dehydrogenase - genetics</subject><ispartof>Journal of medicinal chemistry, 2010-10, Vol.53 (20), p.7327-7336</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-e7328fd603326f506d4050d09bb029cae429083504ff32952e3014f27d90fc683</citedby><cites>FETCH-LOGICAL-a404t-e7328fd603326f506d4050d09bb029cae429083504ff32952e3014f27d90fc683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jm100727t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jm100727t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,778,782,883,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20882962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beierlein, Jennifer M</creatorcontrib><creatorcontrib>Karri, Nanda G</creatorcontrib><creatorcontrib>Anderson, Amy C</creatorcontrib><title>Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure−Activity Relationships</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>Several antifolates, including trimethoprim (TMP) and a series of propargyl-linked analogues, bind dihydrofolate reductase from Bacillus anthracis (BaDHFR) with lower affinity than is typical in other bacterial species. To guide lead optimization for BaDHFR, we explored a new approach to determine structure−activity relationships whereby the enzyme is altered and the analogues remain constant, essentially reversing the standard experimental design. Active site mutants of the enzyme, Ba(F96I)DHFR and Ba(Y102F)DHFR, were created and evaluated with enzyme inhibition assays and crystal structures. The affinities of the antifolates increase up to 60-fold with the Y102F mutant, suggesting that interactions with Tyr 102 are critical for affinity. Crystal structures of the enzymes bound to TMP and propargyl-linked inhibitors reveal the basis of TMP resistance and illuminate the influence of Tyr 102 on the lipophilic linker between the pyrimidine and aryl rings. Two new inhibitors test and validate these conclusions and show the value of the technique for providing new directions during lead optimization.</description><subject>Alkynes - chemical synthesis</subject><subject>Alkynes - chemistry</subject><subject>Amino Acid Sequence</subject><subject>Anti-Bacterial Agents - chemical synthesis</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Bacillus anthracis - enzymology</subject><subject>Biphenyl Compounds - chemical synthesis</subject><subject>Biphenyl Compounds - chemistry</subject><subject>Catalytic Domain</subject><subject>Crystallography, X-Ray</subject><subject>Drug Resistance, Bacterial</subject><subject>Folic Acid Antagonists - chemical synthesis</subject><subject>Folic Acid Antagonists - chemistry</subject><subject>Hydrogen Bonding</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Pyrimidines - chemical synthesis</subject><subject>Pyrimidines - chemistry</subject><subject>Static Electricity</subject><subject>Structure-Activity Relationship</subject><subject>Tetrahydrofolate Dehydrogenase - chemistry</subject><subject>Tetrahydrofolate Dehydrogenase - genetics</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtOwzAQRS0EouWx4AdQNixYBMZjJ002SFCeEgiJxzpyY7t1lcaV7VT0D1jziXwJgUAFEqvx6B4fy5eQPQpHFJAeT2cUYICDsEb6NEGIeQZ8nfQBEGNMkfXIlvdTAGAU2SbpIWQZ5in2SXgSbqyCktFdE0QwtvaR1dGZKE1VNT4SdZi4dvHRuZkspbPaViKo6EHJpgzCq2hoa6nqr8NsXqmX6DG4Nmqcen99Oy2DWZiwbPmqs0_M3O-QDS0qr3a_5zZ5vrx4Gl7Ht_dXN8PT21hw4CFWA4aZlikwhqlOIJUcEpCQj0aAeSkUxxwylgDXmmGeoGJAucaBzEGXaca2yUnnnTejmZKlqoMTVTF3ZibcsrDCFH-T2kyKsV0ULKVZnvJWcNgJSme9d0qv7lIoPqsvVtW37P7vx1bkT9ctcNABovTF1Daubv_-j-gDfRiO8g</recordid><startdate>20101028</startdate><enddate>20101028</enddate><creator>Beierlein, Jennifer M</creator><creator>Karri, Nanda G</creator><creator>Anderson, Amy C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20101028</creationdate><title>Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure−Activity Relationships</title><author>Beierlein, Jennifer M ; Karri, Nanda G ; Anderson, Amy C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-e7328fd603326f506d4050d09bb029cae429083504ff32952e3014f27d90fc683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alkynes - chemical synthesis</topic><topic>Alkynes - chemistry</topic><topic>Amino Acid Sequence</topic><topic>Anti-Bacterial Agents - chemical synthesis</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Bacillus anthracis - enzymology</topic><topic>Biphenyl Compounds - chemical synthesis</topic><topic>Biphenyl Compounds - chemistry</topic><topic>Catalytic Domain</topic><topic>Crystallography, X-Ray</topic><topic>Drug Resistance, Bacterial</topic><topic>Folic Acid Antagonists - chemical synthesis</topic><topic>Folic Acid Antagonists - chemistry</topic><topic>Hydrogen Bonding</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Pyrimidines - chemical synthesis</topic><topic>Pyrimidines - chemistry</topic><topic>Static Electricity</topic><topic>Structure-Activity Relationship</topic><topic>Tetrahydrofolate Dehydrogenase - chemistry</topic><topic>Tetrahydrofolate Dehydrogenase - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beierlein, Jennifer M</creatorcontrib><creatorcontrib>Karri, Nanda G</creatorcontrib><creatorcontrib>Anderson, Amy C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beierlein, Jennifer M</au><au>Karri, Nanda G</au><au>Anderson, Amy C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure−Activity Relationships</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2010-10-28</date><risdate>2010</risdate><volume>53</volume><issue>20</issue><spage>7327</spage><epage>7336</epage><pages>7327-7336</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><abstract>Several antifolates, including trimethoprim (TMP) and a series of propargyl-linked analogues, bind dihydrofolate reductase from Bacillus anthracis (BaDHFR) with lower affinity than is typical in other bacterial species. To guide lead optimization for BaDHFR, we explored a new approach to determine structure−activity relationships whereby the enzyme is altered and the analogues remain constant, essentially reversing the standard experimental design. Active site mutants of the enzyme, Ba(F96I)DHFR and Ba(Y102F)DHFR, were created and evaluated with enzyme inhibition assays and crystal structures. The affinities of the antifolates increase up to 60-fold with the Y102F mutant, suggesting that interactions with Tyr 102 are critical for affinity. Crystal structures of the enzymes bound to TMP and propargyl-linked inhibitors reveal the basis of TMP resistance and illuminate the influence of Tyr 102 on the lipophilic linker between the pyrimidine and aryl rings. Two new inhibitors test and validate these conclusions and show the value of the technique for providing new directions during lead optimization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20882962</pmid><doi>10.1021/jm100727t</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2623
ispartof Journal of medicinal chemistry, 2010-10, Vol.53 (20), p.7327-7336
issn 0022-2623
1520-4804
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3618964
source MEDLINE; ACS Publications
subjects Alkynes - chemical synthesis
Alkynes - chemistry
Amino Acid Sequence
Anti-Bacterial Agents - chemical synthesis
Anti-Bacterial Agents - chemistry
Bacillus anthracis - enzymology
Biphenyl Compounds - chemical synthesis
Biphenyl Compounds - chemistry
Catalytic Domain
Crystallography, X-Ray
Drug Resistance, Bacterial
Folic Acid Antagonists - chemical synthesis
Folic Acid Antagonists - chemistry
Hydrogen Bonding
Models, Molecular
Molecular Sequence Data
Mutagenesis, Site-Directed
Mutation
Protein Binding
Protein Conformation
Pyrimidines - chemical synthesis
Pyrimidines - chemistry
Static Electricity
Structure-Activity Relationship
Tetrahydrofolate Dehydrogenase - chemistry
Tetrahydrofolate Dehydrogenase - genetics
title Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure−Activity Relationships
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20Mutations%20of%20Bacillus%20anthracis%20Dihydrofolate%20Reductase%20Condense%20Complex%20Structure%E2%88%92Activity%20Relationships&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Beierlein,%20Jennifer%20M&rft.date=2010-10-28&rft.volume=53&rft.issue=20&rft.spage=7327&rft.epage=7336&rft.pages=7327-7336&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/jm100727t&rft_dat=%3Cacs_pubme%3Ea653025961%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/20882962&rfr_iscdi=true