Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity

Invertase is an enzyme that is widely distributed among plants and microorganisms and that catalyzes the hydrolysis of the disaccharide sucrose into glucose and fructose. Despite the important physiological role of Saccharomyces invertase (SInv) and the historical relevance of this enzyme as a model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-04, Vol.288 (14), p.9755-9766
Hauptverfasser: Sainz-Polo, M Angela, Ramírez-Escudero, Mercedes, Lafraya, Alvaro, González, Beatriz, Marín-Navarro, Julia, Polaina, Julio, Sanz-Aparicio, Julia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9766
container_issue 14
container_start_page 9755
container_title The Journal of biological chemistry
container_volume 288
creator Sainz-Polo, M Angela
Ramírez-Escudero, Mercedes
Lafraya, Alvaro
González, Beatriz
Marín-Navarro, Julia
Polaina, Julio
Sanz-Aparicio, Julia
description Invertase is an enzyme that is widely distributed among plants and microorganisms and that catalyzes the hydrolysis of the disaccharide sucrose into glucose and fructose. Despite the important physiological role of Saccharomyces invertase (SInv) and the historical relevance of this enzyme as a model in early biochemical studies, its structure had not yet been solved. We report here the crystal structure of recombinant SInv at 3.3 Å resolution showing that the enzyme folds into the catalytic β-propeller and β-sandwich domains characteristic of GH32 enzymes. However, SInv displays an unusual quaternary structure. Monomers associate in two different kinds of dimers, which are in turn assembled into an octamer, best described as a tetramer of dimers. Dimerization plays a determinant role in substrate specificity because this assembly sets steric constraints that limit the access to the active site of oligosaccharides of more than four units. Comparative analysis of GH32 enzymes showed that formation of the SInv octamer occurs through a β-sheet extension that seems unique to this enzyme. Interaction between dimers is determined by a short amino acid sequence at the beginning of the β-sandwich domain. Our results highlight the role of the non-catalytic domain in fine-tuning substrate specificity and thus supplement our knowledge of the activity of this important family of enzymes. In turn, this gives a deeper insight into the structural features that rule modularity and protein-carbohydrate recognition.
doi_str_mv 10.1074/jbc.M112.446435
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3617277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1324959549</sourcerecordid><originalsourceid>FETCH-LOGICAL-p266t-f20fb5fb595c076ff6c52365d6b787797cc14ae1b9e06f303015a590c0d10dae3</originalsourceid><addsrcrecordid>eNpVkL1rHDEQxUWIiS9O6nRBZZq96Fu3LgLB5AtsXNiBdMusdtYnsyudJa3h3Pofj0hsYw8DU8yb33sMIR84W3Nm1efr3q3POBdrpYyS-hVZcbaRjdT8z2uyYkzwphV6c0je5nzNaqmWvyGHQipZz-WK3F9uE2Iz-BlD9jHARHNJiytLQhpHegHObSHFee8wUx9uMRXIeExTnP4JgIYYGgcFpn3xjg5xBh-qksbJX8UZk7-DUskUwkDz0lc8FKR5h86P3vmyf0cORpgyvn-YR-T392-XJz-b0_Mfv06-njY7YUxpRsHGXtdutWPWjKNxWkijB9PbjbWtdY4rQN63yMwomWRcg26ZYwNnA6A8Il_-c3dLP-PgMNQoU7dLfoa07yL47uUm-G13FW87abgV1lbApwdAijcL5tLNPjucJggYl9xxKVRb46m2Sj8-93oyefy8_Avcmoql</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1324959549</pqid></control><display><type>article</type><title>Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sainz-Polo, M Angela ; Ramírez-Escudero, Mercedes ; Lafraya, Alvaro ; González, Beatriz ; Marín-Navarro, Julia ; Polaina, Julio ; Sanz-Aparicio, Julia</creator><creatorcontrib>Sainz-Polo, M Angela ; Ramírez-Escudero, Mercedes ; Lafraya, Alvaro ; González, Beatriz ; Marín-Navarro, Julia ; Polaina, Julio ; Sanz-Aparicio, Julia</creatorcontrib><description>Invertase is an enzyme that is widely distributed among plants and microorganisms and that catalyzes the hydrolysis of the disaccharide sucrose into glucose and fructose. Despite the important physiological role of Saccharomyces invertase (SInv) and the historical relevance of this enzyme as a model in early biochemical studies, its structure had not yet been solved. We report here the crystal structure of recombinant SInv at 3.3 Å resolution showing that the enzyme folds into the catalytic β-propeller and β-sandwich domains characteristic of GH32 enzymes. However, SInv displays an unusual quaternary structure. Monomers associate in two different kinds of dimers, which are in turn assembled into an octamer, best described as a tetramer of dimers. Dimerization plays a determinant role in substrate specificity because this assembly sets steric constraints that limit the access to the active site of oligosaccharides of more than four units. Comparative analysis of GH32 enzymes showed that formation of the SInv octamer occurs through a β-sheet extension that seems unique to this enzyme. Interaction between dimers is determined by a short amino acid sequence at the beginning of the β-sandwich domain. Our results highlight the role of the non-catalytic domain in fine-tuning substrate specificity and thus supplement our knowledge of the activity of this important family of enzymes. In turn, this gives a deeper insight into the structural features that rule modularity and protein-carbohydrate recognition.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M112.446435</identifier><identifier>PMID: 23430743</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Amino Acid Sequence ; beta-Fructofuranosidase - chemistry ; Carbohydrates - chemistry ; Catalysis ; Catalytic Domain ; Cloning, Molecular ; Crystallography, X-Ray - methods ; Dimerization ; Escherichia coli - metabolism ; Glycoside Hydrolases - chemistry ; Kinetics ; Models, Molecular ; Molecular Conformation ; Molecular Sequence Data ; Protein Conformation ; Protein Structure and Folding ; Protein Structure, Secondary ; Proteins - chemistry ; Saccharomyces - enzymology ; Sequence Homology, Amino Acid ; Stereoisomerism ; Substrate Specificity</subject><ispartof>The Journal of biological chemistry, 2013-04, Vol.288 (14), p.9755-9766</ispartof><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617277/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617277/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23430743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sainz-Polo, M Angela</creatorcontrib><creatorcontrib>Ramírez-Escudero, Mercedes</creatorcontrib><creatorcontrib>Lafraya, Alvaro</creatorcontrib><creatorcontrib>González, Beatriz</creatorcontrib><creatorcontrib>Marín-Navarro, Julia</creatorcontrib><creatorcontrib>Polaina, Julio</creatorcontrib><creatorcontrib>Sanz-Aparicio, Julia</creatorcontrib><title>Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Invertase is an enzyme that is widely distributed among plants and microorganisms and that catalyzes the hydrolysis of the disaccharide sucrose into glucose and fructose. Despite the important physiological role of Saccharomyces invertase (SInv) and the historical relevance of this enzyme as a model in early biochemical studies, its structure had not yet been solved. We report here the crystal structure of recombinant SInv at 3.3 Å resolution showing that the enzyme folds into the catalytic β-propeller and β-sandwich domains characteristic of GH32 enzymes. However, SInv displays an unusual quaternary structure. Monomers associate in two different kinds of dimers, which are in turn assembled into an octamer, best described as a tetramer of dimers. Dimerization plays a determinant role in substrate specificity because this assembly sets steric constraints that limit the access to the active site of oligosaccharides of more than four units. Comparative analysis of GH32 enzymes showed that formation of the SInv octamer occurs through a β-sheet extension that seems unique to this enzyme. Interaction between dimers is determined by a short amino acid sequence at the beginning of the β-sandwich domain. Our results highlight the role of the non-catalytic domain in fine-tuning substrate specificity and thus supplement our knowledge of the activity of this important family of enzymes. In turn, this gives a deeper insight into the structural features that rule modularity and protein-carbohydrate recognition.</description><subject>Amino Acid Sequence</subject><subject>beta-Fructofuranosidase - chemistry</subject><subject>Carbohydrates - chemistry</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray - methods</subject><subject>Dimerization</subject><subject>Escherichia coli - metabolism</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Molecular Sequence Data</subject><subject>Protein Conformation</subject><subject>Protein Structure and Folding</subject><subject>Protein Structure, Secondary</subject><subject>Proteins - chemistry</subject><subject>Saccharomyces - enzymology</subject><subject>Sequence Homology, Amino Acid</subject><subject>Stereoisomerism</subject><subject>Substrate Specificity</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkL1rHDEQxUWIiS9O6nRBZZq96Fu3LgLB5AtsXNiBdMusdtYnsyudJa3h3Pofj0hsYw8DU8yb33sMIR84W3Nm1efr3q3POBdrpYyS-hVZcbaRjdT8z2uyYkzwphV6c0je5nzNaqmWvyGHQipZz-WK3F9uE2Iz-BlD9jHARHNJiytLQhpHegHObSHFee8wUx9uMRXIeExTnP4JgIYYGgcFpn3xjg5xBh-qksbJX8UZk7-DUskUwkDz0lc8FKR5h86P3vmyf0cORpgyvn-YR-T392-XJz-b0_Mfv06-njY7YUxpRsHGXtdutWPWjKNxWkijB9PbjbWtdY4rQN63yMwomWRcg26ZYwNnA6A8Il_-c3dLP-PgMNQoU7dLfoa07yL47uUm-G13FW87abgV1lbApwdAijcL5tLNPjucJggYl9xxKVRb46m2Sj8-93oyefy8_Avcmoql</recordid><startdate>20130405</startdate><enddate>20130405</enddate><creator>Sainz-Polo, M Angela</creator><creator>Ramírez-Escudero, Mercedes</creator><creator>Lafraya, Alvaro</creator><creator>González, Beatriz</creator><creator>Marín-Navarro, Julia</creator><creator>Polaina, Julio</creator><creator>Sanz-Aparicio, Julia</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130405</creationdate><title>Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity</title><author>Sainz-Polo, M Angela ; Ramírez-Escudero, Mercedes ; Lafraya, Alvaro ; González, Beatriz ; Marín-Navarro, Julia ; Polaina, Julio ; Sanz-Aparicio, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p266t-f20fb5fb595c076ff6c52365d6b787797cc14ae1b9e06f303015a590c0d10dae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>beta-Fructofuranosidase - chemistry</topic><topic>Carbohydrates - chemistry</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray - methods</topic><topic>Dimerization</topic><topic>Escherichia coli - metabolism</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Molecular Sequence Data</topic><topic>Protein Conformation</topic><topic>Protein Structure and Folding</topic><topic>Protein Structure, Secondary</topic><topic>Proteins - chemistry</topic><topic>Saccharomyces - enzymology</topic><topic>Sequence Homology, Amino Acid</topic><topic>Stereoisomerism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sainz-Polo, M Angela</creatorcontrib><creatorcontrib>Ramírez-Escudero, Mercedes</creatorcontrib><creatorcontrib>Lafraya, Alvaro</creatorcontrib><creatorcontrib>González, Beatriz</creatorcontrib><creatorcontrib>Marín-Navarro, Julia</creatorcontrib><creatorcontrib>Polaina, Julio</creatorcontrib><creatorcontrib>Sanz-Aparicio, Julia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sainz-Polo, M Angela</au><au>Ramírez-Escudero, Mercedes</au><au>Lafraya, Alvaro</au><au>González, Beatriz</au><au>Marín-Navarro, Julia</au><au>Polaina, Julio</au><au>Sanz-Aparicio, Julia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-04-05</date><risdate>2013</risdate><volume>288</volume><issue>14</issue><spage>9755</spage><epage>9766</epage><pages>9755-9766</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Invertase is an enzyme that is widely distributed among plants and microorganisms and that catalyzes the hydrolysis of the disaccharide sucrose into glucose and fructose. Despite the important physiological role of Saccharomyces invertase (SInv) and the historical relevance of this enzyme as a model in early biochemical studies, its structure had not yet been solved. We report here the crystal structure of recombinant SInv at 3.3 Å resolution showing that the enzyme folds into the catalytic β-propeller and β-sandwich domains characteristic of GH32 enzymes. However, SInv displays an unusual quaternary structure. Monomers associate in two different kinds of dimers, which are in turn assembled into an octamer, best described as a tetramer of dimers. Dimerization plays a determinant role in substrate specificity because this assembly sets steric constraints that limit the access to the active site of oligosaccharides of more than four units. Comparative analysis of GH32 enzymes showed that formation of the SInv octamer occurs through a β-sheet extension that seems unique to this enzyme. Interaction between dimers is determined by a short amino acid sequence at the beginning of the β-sandwich domain. Our results highlight the role of the non-catalytic domain in fine-tuning substrate specificity and thus supplement our knowledge of the activity of this important family of enzymes. In turn, this gives a deeper insight into the structural features that rule modularity and protein-carbohydrate recognition.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>23430743</pmid><doi>10.1074/jbc.M112.446435</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2013-04, Vol.288 (14), p.9755-9766
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3617277
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Amino Acid Sequence
beta-Fructofuranosidase - chemistry
Carbohydrates - chemistry
Catalysis
Catalytic Domain
Cloning, Molecular
Crystallography, X-Ray - methods
Dimerization
Escherichia coli - metabolism
Glycoside Hydrolases - chemistry
Kinetics
Models, Molecular
Molecular Conformation
Molecular Sequence Data
Protein Conformation
Protein Structure and Folding
Protein Structure, Secondary
Proteins - chemistry
Saccharomyces - enzymology
Sequence Homology, Amino Acid
Stereoisomerism
Substrate Specificity
title Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20structure%20of%20Saccharomyces%20invertase:%20role%20of%20a%20non-catalytic%20domain%20in%20oligomerization%20and%20substrate%20specificity&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Sainz-Polo,%20M%20Angela&rft.date=2013-04-05&rft.volume=288&rft.issue=14&rft.spage=9755&rft.epage=9766&rft.pages=9755-9766&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M112.446435&rft_dat=%3Cproquest_pubme%3E1324959549%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1324959549&rft_id=info:pmid/23430743&rfr_iscdi=true