Identification of non-canonical NF-κB signaling as a critical mediator of Smac mimetic-stimulated migration and invasion of glioblastoma cells

As inhibitor of apoptosis (IAP) proteins can regulate additional signaling pathways beyond apoptosis, we investigated the effect of the second mitochondrial activator of caspases (Smac) mimetic BV6, which antagonizes IAP proteins, on non-apoptotic functions in glioblastoma (GBM). Here, we identify n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2013-03, Vol.4 (3), p.e564-e564
Hauptverfasser: Tchoghandjian, A, Jennewein, C, Eckhardt, I, Rajalingam, K, Fulda, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e564
container_issue 3
container_start_page e564
container_title Cell death & disease
container_volume 4
creator Tchoghandjian, A
Jennewein, C
Eckhardt, I
Rajalingam, K
Fulda, S
description As inhibitor of apoptosis (IAP) proteins can regulate additional signaling pathways beyond apoptosis, we investigated the effect of the second mitochondrial activator of caspases (Smac) mimetic BV6, which antagonizes IAP proteins, on non-apoptotic functions in glioblastoma (GBM). Here, we identify non-canonical nuclear factor- κ B (NF- κ B) signaling and a tumor necrosis factor- α (TNF α )/TNF receptor 1 (TNFR1) autocrine/paracrine loop as critical mediators of BV6-stimulated migration and invasion of GBM cells. In addition to GBM cell lines, BV6 triggers cell elongation, migration and invasion in primary, patient-derived GBM cells at non-toxic concentrations, which do not affect cell viability or proliferation, and also increases infiltrative tumor growth in vivo underscoring the relevance of these findings. Molecular studies reveal that BV6 causes rapid degradation of cellular IAP proteins, accumulation of NIK, processing of p100 to p52, translocation of p52 into the nucleus, increased NF- κ B DNA binding and enhanced NF- κ B transcriptional activity. Electrophoretic mobility shift assay supershift shows that the NF- κ B DNA-binding subunits consist of p50, p52 and RelB further confirming the activation of the non-canonical NF- κ B pathway. BV6-stimulated NF- κ B activation leads to elevated mRNA levels of TNF α and additional NF- κ B target genes involved in migration (i.e., interleukin 8, monocyte chemoattractant protein 1, CXC chemokine receptor 4) and invasion (i.e., matrix metalloproteinase-9). Importantly, inhibition of NF- κ B by overexpression of dominant-negative I κ B α superrepressor prevents the BV6-stimulated cell elongation, migration and invasion. Similarly, specific inhibition of non-canonical NF- κ B signaling by RNA interference-mediated silencing of NIK suppresses the BV6-induced cell elongation, migration and invasion as well as upregulation of NF- κ B target genes. Intriguingly, pharmacological or genetic inhibition of the BV6-stimulated TNF α autocrine/paracrine loop by the TNF α -blocking antibody Enbrel or by knockdown of TNFR1 abrogates BV6-induced cell elongation, migration and invasion. By demonstrating that the Smac mimetic BV6 at non-toxic concentrations promotes migration and invasion of GBM cells via non-canonical NF- κ B signaling, our findings have important implications for the use of Smac mimetics as cancer therapeutics.
doi_str_mv 10.1038/cddis.2013.70
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3615728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790959516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-a1b723944206a9a0322ef4d48b390295549e05eaa4bb0652c7070cab273d36d83</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhSNERau2S7YoS1jkMv5L4g1SqSitdEUXhbU1cZzUVWIXO7lSn4L34SF4JpzmUhUkvLCtOd8ca3yy7DWBDQFWv9dta-OGAmGbCl5kRxQ4KXhdy5fP7ofZaYx3kBZjQEX5KjukTLCac3GU_bhqjZtsZzVO1rvcd7nzrtCY9lQb8i8Xxa-fH_Noe4eDdX2OMcdcBzs9yqNpLU4-LI03I-p8tKNJUhEnO84DTqZNpT6s7uja3Lodxv1T_WB9M2Cc_Jg8zTDEk-ygwyGa0_15nH27-PT1_LLYXn--Oj_bFppTNhVImooyyTmFEiUCo9R0vOV1wyRQKQSXBoRB5E0DpaC6ggo0NrRiLSvbmh1nH1bf-7lJM-j0CQEHdR_siOFBebTqb8XZW9X7nWIlERVdDN6tBrf_tF2ebdVSAwYSQPAdSezb_WPBf59NnNRo4zIuOuPnqEglQQopSJnQYkV18DEG0z15E1BL5uoxc7VkripI_JvnczzRfxJOwGYFYpJcb4K683NIWcb_OP4GKHW6KA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790959516</pqid></control><display><type>article</type><title>Identification of non-canonical NF-κB signaling as a critical mediator of Smac mimetic-stimulated migration and invasion of glioblastoma cells</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Tchoghandjian, A ; Jennewein, C ; Eckhardt, I ; Rajalingam, K ; Fulda, S</creator><creatorcontrib>Tchoghandjian, A ; Jennewein, C ; Eckhardt, I ; Rajalingam, K ; Fulda, S</creatorcontrib><description>As inhibitor of apoptosis (IAP) proteins can regulate additional signaling pathways beyond apoptosis, we investigated the effect of the second mitochondrial activator of caspases (Smac) mimetic BV6, which antagonizes IAP proteins, on non-apoptotic functions in glioblastoma (GBM). Here, we identify non-canonical nuclear factor- κ B (NF- κ B) signaling and a tumor necrosis factor- α (TNF α )/TNF receptor 1 (TNFR1) autocrine/paracrine loop as critical mediators of BV6-stimulated migration and invasion of GBM cells. In addition to GBM cell lines, BV6 triggers cell elongation, migration and invasion in primary, patient-derived GBM cells at non-toxic concentrations, which do not affect cell viability or proliferation, and also increases infiltrative tumor growth in vivo underscoring the relevance of these findings. Molecular studies reveal that BV6 causes rapid degradation of cellular IAP proteins, accumulation of NIK, processing of p100 to p52, translocation of p52 into the nucleus, increased NF- κ B DNA binding and enhanced NF- κ B transcriptional activity. Electrophoretic mobility shift assay supershift shows that the NF- κ B DNA-binding subunits consist of p50, p52 and RelB further confirming the activation of the non-canonical NF- κ B pathway. BV6-stimulated NF- κ B activation leads to elevated mRNA levels of TNF α and additional NF- κ B target genes involved in migration (i.e., interleukin 8, monocyte chemoattractant protein 1, CXC chemokine receptor 4) and invasion (i.e., matrix metalloproteinase-9). Importantly, inhibition of NF- κ B by overexpression of dominant-negative I κ B α superrepressor prevents the BV6-stimulated cell elongation, migration and invasion. Similarly, specific inhibition of non-canonical NF- κ B signaling by RNA interference-mediated silencing of NIK suppresses the BV6-induced cell elongation, migration and invasion as well as upregulation of NF- κ B target genes. Intriguingly, pharmacological or genetic inhibition of the BV6-stimulated TNF α autocrine/paracrine loop by the TNF α -blocking antibody Enbrel or by knockdown of TNFR1 abrogates BV6-induced cell elongation, migration and invasion. By demonstrating that the Smac mimetic BV6 at non-toxic concentrations promotes migration and invasion of GBM cells via non-canonical NF- κ B signaling, our findings have important implications for the use of Smac mimetics as cancer therapeutics.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/cddis.2013.70</identifier><identifier>PMID: 23538445</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1689/1690 ; 631/80/82/23 ; 631/80/84/2336 ; 631/80/86 ; Antibodies ; Apoptosis Regulatory Proteins ; Biochemistry ; Biomedical and Life Sciences ; Brain Neoplasms ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Cell Biology ; Cell Culture ; Cell Line, Tumor ; Cell Movement ; Cell Movement - drug effects ; Etanercept ; Gene Expression Regulation, Neoplastic ; Gene Expression Regulation, Neoplastic - drug effects ; Glioblastoma ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Humans ; Immunoglobulin G ; Immunoglobulin G - pharmacology ; Immunology ; Inhibitor of Apoptosis Proteins ; Inhibitor of Apoptosis Proteins - genetics ; Inhibitor of Apoptosis Proteins - metabolism ; Intracellular Signaling Peptides and Proteins ; Intracellular Signaling Peptides and Proteins - chemistry ; Life Sciences ; Mitochondrial Proteins ; Mitochondrial Proteins - chemistry ; Neoplasm Invasiveness ; Neoplasm Invasiveness - genetics ; Neoplasm Invasiveness - prevention &amp; control ; NF-kappa B ; NF-kappa B - antagonists &amp; inhibitors ; NF-kappa B - genetics ; NF-kappa B - metabolism ; Original ; original-article ; Peptidomimetics ; Peptidomimetics - pharmacology ; Protein Subunits ; Protein Subunits - antagonists &amp; inhibitors ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Receptors, Tumor Necrosis Factor ; Receptors, Tumor Necrosis Factor, Type I ; Receptors, Tumor Necrosis Factor, Type I - genetics ; Receptors, Tumor Necrosis Factor, Type I - metabolism ; RNA, Small Interfering ; RNA, Small Interfering - genetics ; Signal Transduction ; Signal Transduction - drug effects ; Tumor Necrosis Factor-alpha ; Tumor Necrosis Factor-alpha - genetics ; Tumor Necrosis Factor-alpha - metabolism</subject><ispartof>Cell death &amp; disease, 2013-03, Vol.4 (3), p.e564-e564</ispartof><rights>The Author(s) 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2013 Macmillan Publishers Limited 2013 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-a1b723944206a9a0322ef4d48b390295549e05eaa4bb0652c7070cab273d36d83</citedby><cites>FETCH-LOGICAL-c423t-a1b723944206a9a0322ef4d48b390295549e05eaa4bb0652c7070cab273d36d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615728/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615728/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23538445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03090054$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tchoghandjian, A</creatorcontrib><creatorcontrib>Jennewein, C</creatorcontrib><creatorcontrib>Eckhardt, I</creatorcontrib><creatorcontrib>Rajalingam, K</creatorcontrib><creatorcontrib>Fulda, S</creatorcontrib><title>Identification of non-canonical NF-κB signaling as a critical mediator of Smac mimetic-stimulated migration and invasion of glioblastoma cells</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>As inhibitor of apoptosis (IAP) proteins can regulate additional signaling pathways beyond apoptosis, we investigated the effect of the second mitochondrial activator of caspases (Smac) mimetic BV6, which antagonizes IAP proteins, on non-apoptotic functions in glioblastoma (GBM). Here, we identify non-canonical nuclear factor- κ B (NF- κ B) signaling and a tumor necrosis factor- α (TNF α )/TNF receptor 1 (TNFR1) autocrine/paracrine loop as critical mediators of BV6-stimulated migration and invasion of GBM cells. In addition to GBM cell lines, BV6 triggers cell elongation, migration and invasion in primary, patient-derived GBM cells at non-toxic concentrations, which do not affect cell viability or proliferation, and also increases infiltrative tumor growth in vivo underscoring the relevance of these findings. Molecular studies reveal that BV6 causes rapid degradation of cellular IAP proteins, accumulation of NIK, processing of p100 to p52, translocation of p52 into the nucleus, increased NF- κ B DNA binding and enhanced NF- κ B transcriptional activity. Electrophoretic mobility shift assay supershift shows that the NF- κ B DNA-binding subunits consist of p50, p52 and RelB further confirming the activation of the non-canonical NF- κ B pathway. BV6-stimulated NF- κ B activation leads to elevated mRNA levels of TNF α and additional NF- κ B target genes involved in migration (i.e., interleukin 8, monocyte chemoattractant protein 1, CXC chemokine receptor 4) and invasion (i.e., matrix metalloproteinase-9). Importantly, inhibition of NF- κ B by overexpression of dominant-negative I κ B α superrepressor prevents the BV6-stimulated cell elongation, migration and invasion. Similarly, specific inhibition of non-canonical NF- κ B signaling by RNA interference-mediated silencing of NIK suppresses the BV6-induced cell elongation, migration and invasion as well as upregulation of NF- κ B target genes. Intriguingly, pharmacological or genetic inhibition of the BV6-stimulated TNF α autocrine/paracrine loop by the TNF α -blocking antibody Enbrel or by knockdown of TNFR1 abrogates BV6-induced cell elongation, migration and invasion. By demonstrating that the Smac mimetic BV6 at non-toxic concentrations promotes migration and invasion of GBM cells via non-canonical NF- κ B signaling, our findings have important implications for the use of Smac mimetics as cancer therapeutics.</description><subject>631/378/1689/1690</subject><subject>631/80/82/23</subject><subject>631/80/84/2336</subject><subject>631/80/86</subject><subject>Antibodies</subject><subject>Apoptosis Regulatory Proteins</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Brain Neoplasms</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement</subject><subject>Cell Movement - drug effects</subject><subject>Etanercept</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Glioblastoma</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Humans</subject><subject>Immunoglobulin G</subject><subject>Immunoglobulin G - pharmacology</subject><subject>Immunology</subject><subject>Inhibitor of Apoptosis Proteins</subject><subject>Inhibitor of Apoptosis Proteins - genetics</subject><subject>Inhibitor of Apoptosis Proteins - metabolism</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Intracellular Signaling Peptides and Proteins - chemistry</subject><subject>Life Sciences</subject><subject>Mitochondrial Proteins</subject><subject>Mitochondrial Proteins - chemistry</subject><subject>Neoplasm Invasiveness</subject><subject>Neoplasm Invasiveness - genetics</subject><subject>Neoplasm Invasiveness - prevention &amp; control</subject><subject>NF-kappa B</subject><subject>NF-kappa B - antagonists &amp; inhibitors</subject><subject>NF-kappa B - genetics</subject><subject>NF-kappa B - metabolism</subject><subject>Original</subject><subject>original-article</subject><subject>Peptidomimetics</subject><subject>Peptidomimetics - pharmacology</subject><subject>Protein Subunits</subject><subject>Protein Subunits - antagonists &amp; inhibitors</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Receptors, Tumor Necrosis Factor</subject><subject>Receptors, Tumor Necrosis Factor, Type I</subject><subject>Receptors, Tumor Necrosis Factor, Type I - genetics</subject><subject>Receptors, Tumor Necrosis Factor, Type I - metabolism</subject><subject>RNA, Small Interfering</subject><subject>RNA, Small Interfering - genetics</subject><subject>Signal Transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Tumor Necrosis Factor-alpha</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc1u1TAQhSNERau2S7YoS1jkMv5L4g1SqSitdEUXhbU1cZzUVWIXO7lSn4L34SF4JpzmUhUkvLCtOd8ca3yy7DWBDQFWv9dta-OGAmGbCl5kRxQ4KXhdy5fP7ofZaYx3kBZjQEX5KjukTLCac3GU_bhqjZtsZzVO1rvcd7nzrtCY9lQb8i8Xxa-fH_Noe4eDdX2OMcdcBzs9yqNpLU4-LI03I-p8tKNJUhEnO84DTqZNpT6s7uja3Lodxv1T_WB9M2Cc_Jg8zTDEk-ygwyGa0_15nH27-PT1_LLYXn--Oj_bFppTNhVImooyyTmFEiUCo9R0vOV1wyRQKQSXBoRB5E0DpaC6ggo0NrRiLSvbmh1nH1bf-7lJM-j0CQEHdR_siOFBebTqb8XZW9X7nWIlERVdDN6tBrf_tF2ebdVSAwYSQPAdSezb_WPBf59NnNRo4zIuOuPnqEglQQopSJnQYkV18DEG0z15E1BL5uoxc7VkripI_JvnczzRfxJOwGYFYpJcb4K683NIWcb_OP4GKHW6KA</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Tchoghandjian, A</creator><creator>Jennewein, C</creator><creator>Eckhardt, I</creator><creator>Rajalingam, K</creator><creator>Fulda, S</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>H94</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>Identification of non-canonical NF-κB signaling as a critical mediator of Smac mimetic-stimulated migration and invasion of glioblastoma cells</title><author>Tchoghandjian, A ; Jennewein, C ; Eckhardt, I ; Rajalingam, K ; Fulda, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-a1b723944206a9a0322ef4d48b390295549e05eaa4bb0652c7070cab273d36d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/378/1689/1690</topic><topic>631/80/82/23</topic><topic>631/80/84/2336</topic><topic>631/80/86</topic><topic>Antibodies</topic><topic>Apoptosis Regulatory Proteins</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Brain Neoplasms</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement</topic><topic>Cell Movement - drug effects</topic><topic>Etanercept</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Glioblastoma</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Humans</topic><topic>Immunoglobulin G</topic><topic>Immunoglobulin G - pharmacology</topic><topic>Immunology</topic><topic>Inhibitor of Apoptosis Proteins</topic><topic>Inhibitor of Apoptosis Proteins - genetics</topic><topic>Inhibitor of Apoptosis Proteins - metabolism</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Intracellular Signaling Peptides and Proteins - chemistry</topic><topic>Life Sciences</topic><topic>Mitochondrial Proteins</topic><topic>Mitochondrial Proteins - chemistry</topic><topic>Neoplasm Invasiveness</topic><topic>Neoplasm Invasiveness - genetics</topic><topic>Neoplasm Invasiveness - prevention &amp; control</topic><topic>NF-kappa B</topic><topic>NF-kappa B - antagonists &amp; inhibitors</topic><topic>NF-kappa B - genetics</topic><topic>NF-kappa B - metabolism</topic><topic>Original</topic><topic>original-article</topic><topic>Peptidomimetics</topic><topic>Peptidomimetics - pharmacology</topic><topic>Protein Subunits</topic><topic>Protein Subunits - antagonists &amp; inhibitors</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Receptors, Tumor Necrosis Factor</topic><topic>Receptors, Tumor Necrosis Factor, Type I</topic><topic>Receptors, Tumor Necrosis Factor, Type I - genetics</topic><topic>Receptors, Tumor Necrosis Factor, Type I - metabolism</topic><topic>RNA, Small Interfering</topic><topic>RNA, Small Interfering - genetics</topic><topic>Signal Transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Tumor Necrosis Factor-alpha</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tchoghandjian, A</creatorcontrib><creatorcontrib>Jennewein, C</creatorcontrib><creatorcontrib>Eckhardt, I</creatorcontrib><creatorcontrib>Rajalingam, K</creatorcontrib><creatorcontrib>Fulda, S</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tchoghandjian, A</au><au>Jennewein, C</au><au>Eckhardt, I</au><au>Rajalingam, K</au><au>Fulda, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of non-canonical NF-κB signaling as a critical mediator of Smac mimetic-stimulated migration and invasion of glioblastoma cells</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>4</volume><issue>3</issue><spage>e564</spage><epage>e564</epage><pages>e564-e564</pages><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>As inhibitor of apoptosis (IAP) proteins can regulate additional signaling pathways beyond apoptosis, we investigated the effect of the second mitochondrial activator of caspases (Smac) mimetic BV6, which antagonizes IAP proteins, on non-apoptotic functions in glioblastoma (GBM). Here, we identify non-canonical nuclear factor- κ B (NF- κ B) signaling and a tumor necrosis factor- α (TNF α )/TNF receptor 1 (TNFR1) autocrine/paracrine loop as critical mediators of BV6-stimulated migration and invasion of GBM cells. In addition to GBM cell lines, BV6 triggers cell elongation, migration and invasion in primary, patient-derived GBM cells at non-toxic concentrations, which do not affect cell viability or proliferation, and also increases infiltrative tumor growth in vivo underscoring the relevance of these findings. Molecular studies reveal that BV6 causes rapid degradation of cellular IAP proteins, accumulation of NIK, processing of p100 to p52, translocation of p52 into the nucleus, increased NF- κ B DNA binding and enhanced NF- κ B transcriptional activity. Electrophoretic mobility shift assay supershift shows that the NF- κ B DNA-binding subunits consist of p50, p52 and RelB further confirming the activation of the non-canonical NF- κ B pathway. BV6-stimulated NF- κ B activation leads to elevated mRNA levels of TNF α and additional NF- κ B target genes involved in migration (i.e., interleukin 8, monocyte chemoattractant protein 1, CXC chemokine receptor 4) and invasion (i.e., matrix metalloproteinase-9). Importantly, inhibition of NF- κ B by overexpression of dominant-negative I κ B α superrepressor prevents the BV6-stimulated cell elongation, migration and invasion. Similarly, specific inhibition of non-canonical NF- κ B signaling by RNA interference-mediated silencing of NIK suppresses the BV6-induced cell elongation, migration and invasion as well as upregulation of NF- κ B target genes. Intriguingly, pharmacological or genetic inhibition of the BV6-stimulated TNF α autocrine/paracrine loop by the TNF α -blocking antibody Enbrel or by knockdown of TNFR1 abrogates BV6-induced cell elongation, migration and invasion. By demonstrating that the Smac mimetic BV6 at non-toxic concentrations promotes migration and invasion of GBM cells via non-canonical NF- κ B signaling, our findings have important implications for the use of Smac mimetics as cancer therapeutics.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23538445</pmid><doi>10.1038/cddis.2013.70</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2013-03, Vol.4 (3), p.e564-e564
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3615728
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA Free Journals
subjects 631/378/1689/1690
631/80/82/23
631/80/84/2336
631/80/86
Antibodies
Apoptosis Regulatory Proteins
Biochemistry
Biomedical and Life Sciences
Brain Neoplasms
Brain Neoplasms - metabolism
Brain Neoplasms - pathology
Cell Biology
Cell Culture
Cell Line, Tumor
Cell Movement
Cell Movement - drug effects
Etanercept
Gene Expression Regulation, Neoplastic
Gene Expression Regulation, Neoplastic - drug effects
Glioblastoma
Glioblastoma - metabolism
Glioblastoma - pathology
Humans
Immunoglobulin G
Immunoglobulin G - pharmacology
Immunology
Inhibitor of Apoptosis Proteins
Inhibitor of Apoptosis Proteins - genetics
Inhibitor of Apoptosis Proteins - metabolism
Intracellular Signaling Peptides and Proteins
Intracellular Signaling Peptides and Proteins - chemistry
Life Sciences
Mitochondrial Proteins
Mitochondrial Proteins - chemistry
Neoplasm Invasiveness
Neoplasm Invasiveness - genetics
Neoplasm Invasiveness - prevention & control
NF-kappa B
NF-kappa B - antagonists & inhibitors
NF-kappa B - genetics
NF-kappa B - metabolism
Original
original-article
Peptidomimetics
Peptidomimetics - pharmacology
Protein Subunits
Protein Subunits - antagonists & inhibitors
Protein Subunits - genetics
Protein Subunits - metabolism
Receptors, Tumor Necrosis Factor
Receptors, Tumor Necrosis Factor, Type I
Receptors, Tumor Necrosis Factor, Type I - genetics
Receptors, Tumor Necrosis Factor, Type I - metabolism
RNA, Small Interfering
RNA, Small Interfering - genetics
Signal Transduction
Signal Transduction - drug effects
Tumor Necrosis Factor-alpha
Tumor Necrosis Factor-alpha - genetics
Tumor Necrosis Factor-alpha - metabolism
title Identification of non-canonical NF-κB signaling as a critical mediator of Smac mimetic-stimulated migration and invasion of glioblastoma cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20non-canonical%20NF-%CE%BAB%20signaling%20as%20a%20critical%20mediator%20of%20Smac%20mimetic-stimulated%20migration%20and%20invasion%20of%20glioblastoma%20cells&rft.jtitle=Cell%20death%20&%20disease&rft.au=Tchoghandjian,%20A&rft.date=2013-03-01&rft.volume=4&rft.issue=3&rft.spage=e564&rft.epage=e564&rft.pages=e564-e564&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/cddis.2013.70&rft_dat=%3Cproquest_pubme%3E1790959516%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790959516&rft_id=info:pmid/23538445&rfr_iscdi=true