Control of Tumor Bioenergetics and Survival Stress Signaling by Mitochondrial HSP90s

Tumors successfully adapt to constantly changing intra- and extracellular environments, but the wirings of this process are still largely elusive. Here, we show that heat-shock-protein-90-directed protein folding in mitochondria, but not cytosol, maintains energy production in tumor cells. Interfere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer cell 2012-09, Vol.22 (3), p.331-344
Hauptverfasser: Chae, Young Chan, Caino, M. Cecilia, Lisanti, Sofia, Ghosh, Jagadish C., Dohi, Takehiko, Danial, Nika N., Villanueva, Jessie, Ferrero, Stefano, Vaira, Valentina, Santambrogio, Luigi, Bosari, Silvano, Languino, Lucia R., Herlyn, Meenhard, Altieri, Dario C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344
container_issue 3
container_start_page 331
container_title Cancer cell
container_volume 22
creator Chae, Young Chan
Caino, M. Cecilia
Lisanti, Sofia
Ghosh, Jagadish C.
Dohi, Takehiko
Danial, Nika N.
Villanueva, Jessie
Ferrero, Stefano
Vaira, Valentina
Santambrogio, Luigi
Bosari, Silvano
Languino, Lucia R.
Herlyn, Meenhard
Altieri, Dario C.
description Tumors successfully adapt to constantly changing intra- and extracellular environments, but the wirings of this process are still largely elusive. Here, we show that heat-shock-protein-90-directed protein folding in mitochondria, but not cytosol, maintains energy production in tumor cells. Interference with this process activates a signaling network that involves phosphorylation of nutrient-sensing AMP-activated kinase, inhibition of rapamycin-sensitive mTOR complex 1, induction of autophagy, and expression of an endoplasmic reticulum unfolded protein response. This signaling network confers a survival and proliferative advantage to genetically disparate tumors, and correlates with worse outcome in lung cancer patients. Therefore, mitochondrial heat shock protein 90s are adaptive regulators of tumor bioenergetics and tractable targets for cancer therapy. ► HSP90 chaperones in mitochondria, but not cytosol, control tumor energy production ► Mitochondrial proteostasis modulates mTORC1, autophagy, and ER stress signaling ► Targeting mitochondrial HSP90s disables a global network of tumor adaptation
doi_str_mv 10.1016/j.ccr.2012.07.015
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3615709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535610812003078</els_id><sourcerecordid>S1535610812003078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-2dcdbb4e3c20ac67c71b4736a4fa4ff5d1f7d4d75261c808fa1d08ea1d4a9e283</originalsourceid><addsrcrecordid>eNp9kN9KwzAYxYMobk4fwBvJC7Qm_ZOkCIIOdcJEofM6pEnaZXTNSLrC3t6M6dAbISQf5JzzcX4AXGMUY4TJ7SqW0sUJwkmMaIxwfgLGmFEWpYSR0zDnaR4RjNgIXHi_QsGDaXEORklS0DylZAwWU9v1zrbQ1nCxXVsHH43VnXaN7o30UHQKlls3mEG0sOyd9h6WpulEa7oGVjv4Znorl7ZTzgTFrPwokL8EZ7Vovb76fifg8_lpMZ1F8_eX1-nDPJIZy_ooUVJVVaZTmSAhCZUUVxlNicjqcOpc4ZqqTNE8IVgyxGqBFWI63JkodMLSCbg_5G621VorqUMV0fKNM2vhdtwKw__-dGbJGzvwlOCcoiIE4EOAdNZ7p-ujFyO-R8xXPCDme8QcUR4QB8_N76VHxw_TILg7CHSoPhjtuJdGd1Ir47TsubLmn_gvEc2O4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Control of Tumor Bioenergetics and Survival Stress Signaling by Mitochondrial HSP90s</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chae, Young Chan ; Caino, M. Cecilia ; Lisanti, Sofia ; Ghosh, Jagadish C. ; Dohi, Takehiko ; Danial, Nika N. ; Villanueva, Jessie ; Ferrero, Stefano ; Vaira, Valentina ; Santambrogio, Luigi ; Bosari, Silvano ; Languino, Lucia R. ; Herlyn, Meenhard ; Altieri, Dario C.</creator><creatorcontrib>Chae, Young Chan ; Caino, M. Cecilia ; Lisanti, Sofia ; Ghosh, Jagadish C. ; Dohi, Takehiko ; Danial, Nika N. ; Villanueva, Jessie ; Ferrero, Stefano ; Vaira, Valentina ; Santambrogio, Luigi ; Bosari, Silvano ; Languino, Lucia R. ; Herlyn, Meenhard ; Altieri, Dario C.</creatorcontrib><description>Tumors successfully adapt to constantly changing intra- and extracellular environments, but the wirings of this process are still largely elusive. Here, we show that heat-shock-protein-90-directed protein folding in mitochondria, but not cytosol, maintains energy production in tumor cells. Interference with this process activates a signaling network that involves phosphorylation of nutrient-sensing AMP-activated kinase, inhibition of rapamycin-sensitive mTOR complex 1, induction of autophagy, and expression of an endoplasmic reticulum unfolded protein response. This signaling network confers a survival and proliferative advantage to genetically disparate tumors, and correlates with worse outcome in lung cancer patients. Therefore, mitochondrial heat shock protein 90s are adaptive regulators of tumor bioenergetics and tractable targets for cancer therapy. ► HSP90 chaperones in mitochondria, but not cytosol, control tumor energy production ► Mitochondrial proteostasis modulates mTORC1, autophagy, and ER stress signaling ► Targeting mitochondrial HSP90s disables a global network of tumor adaptation</description><identifier>ISSN: 1535-6108</identifier><identifier>EISSN: 1878-3686</identifier><identifier>DOI: 10.1016/j.ccr.2012.07.015</identifier><identifier>PMID: 22975376</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>AMP-Activated Protein Kinases - genetics ; AMP-Activated Protein Kinases - metabolism ; Animals ; Autophagy ; Cell Line, Tumor ; Cell Proliferation ; Cell Survival ; Cytosol - metabolism ; Endoplasmic Reticulum - metabolism ; Energy Metabolism ; Guanidines - pharmacology ; Heat-Shock Proteins - genetics ; HSP90 Heat-Shock Proteins - metabolism ; Humans ; Kinesin - genetics ; Lactams, Macrocyclic - pharmacology ; Lung Neoplasms ; Mechanistic Target of Rapamycin Complex 1 ; Mice ; Mitochondria - metabolism ; Multiprotein Complexes ; Neoplasms - metabolism ; Neoplasms - pathology ; Phosphorylation ; Protein Folding ; Protein-Serine-Threonine Kinases - genetics ; Proteins - antagonists &amp; inhibitors ; RNA Interference ; RNA, Small Interfering ; Signal Transduction ; TOR Serine-Threonine Kinases ; Unfolded Protein Response</subject><ispartof>Cancer cell, 2012-09, Vol.22 (3), p.331-344</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-2dcdbb4e3c20ac67c71b4736a4fa4ff5d1f7d4d75261c808fa1d08ea1d4a9e283</citedby><cites>FETCH-LOGICAL-c484t-2dcdbb4e3c20ac67c71b4736a4fa4ff5d1f7d4d75261c808fa1d08ea1d4a9e283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1535610812003078$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22975376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chae, Young Chan</creatorcontrib><creatorcontrib>Caino, M. Cecilia</creatorcontrib><creatorcontrib>Lisanti, Sofia</creatorcontrib><creatorcontrib>Ghosh, Jagadish C.</creatorcontrib><creatorcontrib>Dohi, Takehiko</creatorcontrib><creatorcontrib>Danial, Nika N.</creatorcontrib><creatorcontrib>Villanueva, Jessie</creatorcontrib><creatorcontrib>Ferrero, Stefano</creatorcontrib><creatorcontrib>Vaira, Valentina</creatorcontrib><creatorcontrib>Santambrogio, Luigi</creatorcontrib><creatorcontrib>Bosari, Silvano</creatorcontrib><creatorcontrib>Languino, Lucia R.</creatorcontrib><creatorcontrib>Herlyn, Meenhard</creatorcontrib><creatorcontrib>Altieri, Dario C.</creatorcontrib><title>Control of Tumor Bioenergetics and Survival Stress Signaling by Mitochondrial HSP90s</title><title>Cancer cell</title><addtitle>Cancer Cell</addtitle><description>Tumors successfully adapt to constantly changing intra- and extracellular environments, but the wirings of this process are still largely elusive. Here, we show that heat-shock-protein-90-directed protein folding in mitochondria, but not cytosol, maintains energy production in tumor cells. Interference with this process activates a signaling network that involves phosphorylation of nutrient-sensing AMP-activated kinase, inhibition of rapamycin-sensitive mTOR complex 1, induction of autophagy, and expression of an endoplasmic reticulum unfolded protein response. This signaling network confers a survival and proliferative advantage to genetically disparate tumors, and correlates with worse outcome in lung cancer patients. Therefore, mitochondrial heat shock protein 90s are adaptive regulators of tumor bioenergetics and tractable targets for cancer therapy. ► HSP90 chaperones in mitochondria, but not cytosol, control tumor energy production ► Mitochondrial proteostasis modulates mTORC1, autophagy, and ER stress signaling ► Targeting mitochondrial HSP90s disables a global network of tumor adaptation</description><subject>AMP-Activated Protein Kinases - genetics</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Cytosol - metabolism</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Energy Metabolism</subject><subject>Guanidines - pharmacology</subject><subject>Heat-Shock Proteins - genetics</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Humans</subject><subject>Kinesin - genetics</subject><subject>Lactams, Macrocyclic - pharmacology</subject><subject>Lung Neoplasms</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Mice</subject><subject>Mitochondria - metabolism</subject><subject>Multiprotein Complexes</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Phosphorylation</subject><subject>Protein Folding</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Proteins - antagonists &amp; inhibitors</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering</subject><subject>Signal Transduction</subject><subject>TOR Serine-Threonine Kinases</subject><subject>Unfolded Protein Response</subject><issn>1535-6108</issn><issn>1878-3686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kN9KwzAYxYMobk4fwBvJC7Qm_ZOkCIIOdcJEofM6pEnaZXTNSLrC3t6M6dAbISQf5JzzcX4AXGMUY4TJ7SqW0sUJwkmMaIxwfgLGmFEWpYSR0zDnaR4RjNgIXHi_QsGDaXEORklS0DylZAwWU9v1zrbQ1nCxXVsHH43VnXaN7o30UHQKlls3mEG0sOyd9h6WpulEa7oGVjv4Znorl7ZTzgTFrPwokL8EZ7Vovb76fifg8_lpMZ1F8_eX1-nDPJIZy_ooUVJVVaZTmSAhCZUUVxlNicjqcOpc4ZqqTNE8IVgyxGqBFWI63JkodMLSCbg_5G621VorqUMV0fKNM2vhdtwKw__-dGbJGzvwlOCcoiIE4EOAdNZ7p-ujFyO-R8xXPCDme8QcUR4QB8_N76VHxw_TILg7CHSoPhjtuJdGd1Ir47TsubLmn_gvEc2O4g</recordid><startdate>20120911</startdate><enddate>20120911</enddate><creator>Chae, Young Chan</creator><creator>Caino, M. Cecilia</creator><creator>Lisanti, Sofia</creator><creator>Ghosh, Jagadish C.</creator><creator>Dohi, Takehiko</creator><creator>Danial, Nika N.</creator><creator>Villanueva, Jessie</creator><creator>Ferrero, Stefano</creator><creator>Vaira, Valentina</creator><creator>Santambrogio, Luigi</creator><creator>Bosari, Silvano</creator><creator>Languino, Lucia R.</creator><creator>Herlyn, Meenhard</creator><creator>Altieri, Dario C.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20120911</creationdate><title>Control of Tumor Bioenergetics and Survival Stress Signaling by Mitochondrial HSP90s</title><author>Chae, Young Chan ; Caino, M. Cecilia ; Lisanti, Sofia ; Ghosh, Jagadish C. ; Dohi, Takehiko ; Danial, Nika N. ; Villanueva, Jessie ; Ferrero, Stefano ; Vaira, Valentina ; Santambrogio, Luigi ; Bosari, Silvano ; Languino, Lucia R. ; Herlyn, Meenhard ; Altieri, Dario C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-2dcdbb4e3c20ac67c71b4736a4fa4ff5d1f7d4d75261c808fa1d08ea1d4a9e283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>AMP-Activated Protein Kinases - genetics</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Cytosol - metabolism</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Energy Metabolism</topic><topic>Guanidines - pharmacology</topic><topic>Heat-Shock Proteins - genetics</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Humans</topic><topic>Kinesin - genetics</topic><topic>Lactams, Macrocyclic - pharmacology</topic><topic>Lung Neoplasms</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Mice</topic><topic>Mitochondria - metabolism</topic><topic>Multiprotein Complexes</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Phosphorylation</topic><topic>Protein Folding</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Proteins - antagonists &amp; inhibitors</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering</topic><topic>Signal Transduction</topic><topic>TOR Serine-Threonine Kinases</topic><topic>Unfolded Protein Response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chae, Young Chan</creatorcontrib><creatorcontrib>Caino, M. Cecilia</creatorcontrib><creatorcontrib>Lisanti, Sofia</creatorcontrib><creatorcontrib>Ghosh, Jagadish C.</creatorcontrib><creatorcontrib>Dohi, Takehiko</creatorcontrib><creatorcontrib>Danial, Nika N.</creatorcontrib><creatorcontrib>Villanueva, Jessie</creatorcontrib><creatorcontrib>Ferrero, Stefano</creatorcontrib><creatorcontrib>Vaira, Valentina</creatorcontrib><creatorcontrib>Santambrogio, Luigi</creatorcontrib><creatorcontrib>Bosari, Silvano</creatorcontrib><creatorcontrib>Languino, Lucia R.</creatorcontrib><creatorcontrib>Herlyn, Meenhard</creatorcontrib><creatorcontrib>Altieri, Dario C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chae, Young Chan</au><au>Caino, M. Cecilia</au><au>Lisanti, Sofia</au><au>Ghosh, Jagadish C.</au><au>Dohi, Takehiko</au><au>Danial, Nika N.</au><au>Villanueva, Jessie</au><au>Ferrero, Stefano</au><au>Vaira, Valentina</au><au>Santambrogio, Luigi</au><au>Bosari, Silvano</au><au>Languino, Lucia R.</au><au>Herlyn, Meenhard</au><au>Altieri, Dario C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Tumor Bioenergetics and Survival Stress Signaling by Mitochondrial HSP90s</atitle><jtitle>Cancer cell</jtitle><addtitle>Cancer Cell</addtitle><date>2012-09-11</date><risdate>2012</risdate><volume>22</volume><issue>3</issue><spage>331</spage><epage>344</epage><pages>331-344</pages><issn>1535-6108</issn><eissn>1878-3686</eissn><abstract>Tumors successfully adapt to constantly changing intra- and extracellular environments, but the wirings of this process are still largely elusive. Here, we show that heat-shock-protein-90-directed protein folding in mitochondria, but not cytosol, maintains energy production in tumor cells. Interference with this process activates a signaling network that involves phosphorylation of nutrient-sensing AMP-activated kinase, inhibition of rapamycin-sensitive mTOR complex 1, induction of autophagy, and expression of an endoplasmic reticulum unfolded protein response. This signaling network confers a survival and proliferative advantage to genetically disparate tumors, and correlates with worse outcome in lung cancer patients. Therefore, mitochondrial heat shock protein 90s are adaptive regulators of tumor bioenergetics and tractable targets for cancer therapy. ► HSP90 chaperones in mitochondria, but not cytosol, control tumor energy production ► Mitochondrial proteostasis modulates mTORC1, autophagy, and ER stress signaling ► Targeting mitochondrial HSP90s disables a global network of tumor adaptation</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22975376</pmid><doi>10.1016/j.ccr.2012.07.015</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-6108
ispartof Cancer cell, 2012-09, Vol.22 (3), p.331-344
issn 1535-6108
1878-3686
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3615709
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects AMP-Activated Protein Kinases - genetics
AMP-Activated Protein Kinases - metabolism
Animals
Autophagy
Cell Line, Tumor
Cell Proliferation
Cell Survival
Cytosol - metabolism
Endoplasmic Reticulum - metabolism
Energy Metabolism
Guanidines - pharmacology
Heat-Shock Proteins - genetics
HSP90 Heat-Shock Proteins - metabolism
Humans
Kinesin - genetics
Lactams, Macrocyclic - pharmacology
Lung Neoplasms
Mechanistic Target of Rapamycin Complex 1
Mice
Mitochondria - metabolism
Multiprotein Complexes
Neoplasms - metabolism
Neoplasms - pathology
Phosphorylation
Protein Folding
Protein-Serine-Threonine Kinases - genetics
Proteins - antagonists & inhibitors
RNA Interference
RNA, Small Interfering
Signal Transduction
TOR Serine-Threonine Kinases
Unfolded Protein Response
title Control of Tumor Bioenergetics and Survival Stress Signaling by Mitochondrial HSP90s
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Tumor%20Bioenergetics%20and%20Survival%20Stress%20Signaling%20by%20Mitochondrial%20HSP90s&rft.jtitle=Cancer%20cell&rft.au=Chae,%20Young%C2%A0Chan&rft.date=2012-09-11&rft.volume=22&rft.issue=3&rft.spage=331&rft.epage=344&rft.pages=331-344&rft.issn=1535-6108&rft.eissn=1878-3686&rft_id=info:doi/10.1016/j.ccr.2012.07.015&rft_dat=%3Celsevier_pubme%3ES1535610812003078%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22975376&rft_els_id=S1535610812003078&rfr_iscdi=true