A network of genes connects polyglutamine toxicity to ploidy control in yeast
Neurodegeneration is linked to protein aggregation in several human disorders. In Huntington’s disease, the length of a polyglutamine stretch in Huntingtin is correlated to neuronal death. Here we utilize a model based on glutamine stretches of 0, 30 or 56 residues in Saccharomyces cerevisiae to und...
Gespeichert in:
Veröffentlicht in: | Nature communications 2013-03, Vol.4 (1), p.1571, Article 1571 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 1571 |
container_title | Nature communications |
container_volume | 4 |
creator | Kaiser, Christoph J.O. Grötzinger, Stefan W. Eckl, Julia M. Papsdorf, Katharina Jordan, Stefan Richter, Klaus |
description | Neurodegeneration is linked to protein aggregation in several human disorders. In Huntington’s disease, the length of a polyglutamine stretch in Huntingtin is correlated to neuronal death. Here we utilize a model based on glutamine stretches of 0, 30 or 56 residues in
Saccharomyces cerevisiae
to understand how such toxic proteins interfere with cellular physiology. A toxicity-mimicking cytostatic effect is evident from compromised colony formation upon expression of polyglutamines. Interestingly, diploid cells are insensitive to polyglutamines and haploid cells can escape cytostasis by hyperploidization. Using a genome-wide screen for genes required to obtain the cytostatic effect, we identify a network related to the budding process and cellular division. We observe a striking mislocalization of the septins Cdc10 and Shs1 in cells arrested by polyglutamines, suggesting that the septin ring may be a pivotal structure connecting polyglutamine toxicity and ploidy.
Expansion of polyglutamines correlates with neuronal death in Huntington’s disease. Here the authors show that, in haploid yeast cells, the toxic effect of polyglutamine expression is associated with the disruption of the septin ring and cells may escape from toxicity by hyperploidization. |
doi_str_mv | 10.1038/ncomms2575 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3615466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929069631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-28f2b41525e48923aabec5f6bf47dd805cb318f6927ddc46133584a1266c0acf3</originalsourceid><addsrcrecordid>eNplkE1LAzEQhoMottRe_AES8Kas5nM3vQil-AUVL3oO2TRbt-4mNUnV_femtGrFucwM8_DOywvAMUYXGFFxabVr20B4wfdAnyCGM1wQur8z98AwhAVKRUdYMHYIeoQygWkx6oOHMbQmfjj_Cl0F58aaALWz1ugY4NI13bxZRdXW1sDoPmtdxy4NcNm4etatyehdA2sLO6NCPAIHlWqCGW77ADzfXD9N7rLp4-39ZDzNNEciZkRUpGSYE26YGBGqVGk0r_KyYsVsJhDXJcWiykckrZrlmFIumMIkzzVSuqIDcLXRXa7K1sy0STZUI5e-bpXvpFO1_Hux9Yucu3dJc8xZnieB062Ad28rE6JcuJW3ybPElGAkEOVFos42lPYuBG-qnw8YyXX68jf9BJ_sevpBv7NOwPkGCOlk58bv_Pwv9wXZ8ZE5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321080357</pqid></control><display><type>article</type><title>A network of genes connects polyglutamine toxicity to ploidy control in yeast</title><source>MEDLINE</source><source>Nature Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Kaiser, Christoph J.O. ; Grötzinger, Stefan W. ; Eckl, Julia M. ; Papsdorf, Katharina ; Jordan, Stefan ; Richter, Klaus</creator><creatorcontrib>Kaiser, Christoph J.O. ; Grötzinger, Stefan W. ; Eckl, Julia M. ; Papsdorf, Katharina ; Jordan, Stefan ; Richter, Klaus</creatorcontrib><description>Neurodegeneration is linked to protein aggregation in several human disorders. In Huntington’s disease, the length of a polyglutamine stretch in Huntingtin is correlated to neuronal death. Here we utilize a model based on glutamine stretches of 0, 30 or 56 residues in
Saccharomyces cerevisiae
to understand how such toxic proteins interfere with cellular physiology. A toxicity-mimicking cytostatic effect is evident from compromised colony formation upon expression of polyglutamines. Interestingly, diploid cells are insensitive to polyglutamines and haploid cells can escape cytostasis by hyperploidization. Using a genome-wide screen for genes required to obtain the cytostatic effect, we identify a network related to the budding process and cellular division. We observe a striking mislocalization of the septins Cdc10 and Shs1 in cells arrested by polyglutamines, suggesting that the septin ring may be a pivotal structure connecting polyglutamine toxicity and ploidy.
Expansion of polyglutamines correlates with neuronal death in Huntington’s disease. Here the authors show that, in haploid yeast cells, the toxic effect of polyglutamine expression is associated with the disruption of the septin ring and cells may escape from toxicity by hyperploidization.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms2575</identifier><identifier>PMID: 23481379</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/325/2484 ; 631/80 ; Bacterial Proteins - metabolism ; Blotting, Western ; Cell cycle ; Gene Knockout Techniques ; Gene Regulatory Networks - drug effects ; Gene Regulatory Networks - genetics ; Genes ; Genes, Fungal - genetics ; Genomes ; Genotype & phenotype ; Green Fluorescent Proteins - metabolism ; Guanidine - pharmacology ; Haploidy ; Humanities and Social Sciences ; Humans ; Huntingtons disease ; Luminescent Proteins - metabolism ; Microscopy ; Models, Genetic ; multidisciplinary ; Peptides - toxicity ; Phenotype ; Plasmids ; Ploidies ; Prions - metabolism ; Proteins ; Quality control ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Science ; Science (multidisciplinary) ; Septins - metabolism ; Toxicity ; Yeast</subject><ispartof>Nature communications, 2013-03, Vol.4 (1), p.1571, Article 1571</ispartof><rights>The Author(s) 2013</rights><rights>Copyright Nature Publishing Group Mar 2013</rights><rights>Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2013 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-28f2b41525e48923aabec5f6bf47dd805cb318f6927ddc46133584a1266c0acf3</citedby><cites>FETCH-LOGICAL-c508t-28f2b41525e48923aabec5f6bf47dd805cb318f6927ddc46133584a1266c0acf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615466/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615466/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23481379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaiser, Christoph J.O.</creatorcontrib><creatorcontrib>Grötzinger, Stefan W.</creatorcontrib><creatorcontrib>Eckl, Julia M.</creatorcontrib><creatorcontrib>Papsdorf, Katharina</creatorcontrib><creatorcontrib>Jordan, Stefan</creatorcontrib><creatorcontrib>Richter, Klaus</creatorcontrib><title>A network of genes connects polyglutamine toxicity to ploidy control in yeast</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Neurodegeneration is linked to protein aggregation in several human disorders. In Huntington’s disease, the length of a polyglutamine stretch in Huntingtin is correlated to neuronal death. Here we utilize a model based on glutamine stretches of 0, 30 or 56 residues in
Saccharomyces cerevisiae
to understand how such toxic proteins interfere with cellular physiology. A toxicity-mimicking cytostatic effect is evident from compromised colony formation upon expression of polyglutamines. Interestingly, diploid cells are insensitive to polyglutamines and haploid cells can escape cytostasis by hyperploidization. Using a genome-wide screen for genes required to obtain the cytostatic effect, we identify a network related to the budding process and cellular division. We observe a striking mislocalization of the septins Cdc10 and Shs1 in cells arrested by polyglutamines, suggesting that the septin ring may be a pivotal structure connecting polyglutamine toxicity and ploidy.
Expansion of polyglutamines correlates with neuronal death in Huntington’s disease. Here the authors show that, in haploid yeast cells, the toxic effect of polyglutamine expression is associated with the disruption of the septin ring and cells may escape from toxicity by hyperploidization.</description><subject>631/208/325/2484</subject><subject>631/80</subject><subject>Bacterial Proteins - metabolism</subject><subject>Blotting, Western</subject><subject>Cell cycle</subject><subject>Gene Knockout Techniques</subject><subject>Gene Regulatory Networks - drug effects</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genes</subject><subject>Genes, Fungal - genetics</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Guanidine - pharmacology</subject><subject>Haploidy</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Huntingtons disease</subject><subject>Luminescent Proteins - metabolism</subject><subject>Microscopy</subject><subject>Models, Genetic</subject><subject>multidisciplinary</subject><subject>Peptides - toxicity</subject><subject>Phenotype</subject><subject>Plasmids</subject><subject>Ploidies</subject><subject>Prions - metabolism</subject><subject>Proteins</subject><subject>Quality control</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Septins - metabolism</subject><subject>Toxicity</subject><subject>Yeast</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkE1LAzEQhoMottRe_AES8Kas5nM3vQil-AUVL3oO2TRbt-4mNUnV_femtGrFucwM8_DOywvAMUYXGFFxabVr20B4wfdAnyCGM1wQur8z98AwhAVKRUdYMHYIeoQygWkx6oOHMbQmfjj_Cl0F58aaALWz1ugY4NI13bxZRdXW1sDoPmtdxy4NcNm4etatyehdA2sLO6NCPAIHlWqCGW77ADzfXD9N7rLp4-39ZDzNNEciZkRUpGSYE26YGBGqVGk0r_KyYsVsJhDXJcWiykckrZrlmFIumMIkzzVSuqIDcLXRXa7K1sy0STZUI5e-bpXvpFO1_Hux9Yucu3dJc8xZnieB062Ad28rE6JcuJW3ybPElGAkEOVFos42lPYuBG-qnw8YyXX68jf9BJ_sevpBv7NOwPkGCOlk58bv_Pwv9wXZ8ZE5</recordid><startdate>20130312</startdate><enddate>20130312</enddate><creator>Kaiser, Christoph J.O.</creator><creator>Grötzinger, Stefan W.</creator><creator>Eckl, Julia M.</creator><creator>Papsdorf, Katharina</creator><creator>Jordan, Stefan</creator><creator>Richter, Klaus</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20130312</creationdate><title>A network of genes connects polyglutamine toxicity to ploidy control in yeast</title><author>Kaiser, Christoph J.O. ; Grötzinger, Stefan W. ; Eckl, Julia M. ; Papsdorf, Katharina ; Jordan, Stefan ; Richter, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-28f2b41525e48923aabec5f6bf47dd805cb318f6927ddc46133584a1266c0acf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/208/325/2484</topic><topic>631/80</topic><topic>Bacterial Proteins - metabolism</topic><topic>Blotting, Western</topic><topic>Cell cycle</topic><topic>Gene Knockout Techniques</topic><topic>Gene Regulatory Networks - drug effects</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genes</topic><topic>Genes, Fungal - genetics</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Guanidine - pharmacology</topic><topic>Haploidy</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Huntingtons disease</topic><topic>Luminescent Proteins - metabolism</topic><topic>Microscopy</topic><topic>Models, Genetic</topic><topic>multidisciplinary</topic><topic>Peptides - toxicity</topic><topic>Phenotype</topic><topic>Plasmids</topic><topic>Ploidies</topic><topic>Prions - metabolism</topic><topic>Proteins</topic><topic>Quality control</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Septins - metabolism</topic><topic>Toxicity</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaiser, Christoph J.O.</creatorcontrib><creatorcontrib>Grötzinger, Stefan W.</creatorcontrib><creatorcontrib>Eckl, Julia M.</creatorcontrib><creatorcontrib>Papsdorf, Katharina</creatorcontrib><creatorcontrib>Jordan, Stefan</creatorcontrib><creatorcontrib>Richter, Klaus</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaiser, Christoph J.O.</au><au>Grötzinger, Stefan W.</au><au>Eckl, Julia M.</au><au>Papsdorf, Katharina</au><au>Jordan, Stefan</au><au>Richter, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A network of genes connects polyglutamine toxicity to ploidy control in yeast</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2013-03-12</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>1571</spage><pages>1571-</pages><artnum>1571</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Neurodegeneration is linked to protein aggregation in several human disorders. In Huntington’s disease, the length of a polyglutamine stretch in Huntingtin is correlated to neuronal death. Here we utilize a model based on glutamine stretches of 0, 30 or 56 residues in
Saccharomyces cerevisiae
to understand how such toxic proteins interfere with cellular physiology. A toxicity-mimicking cytostatic effect is evident from compromised colony formation upon expression of polyglutamines. Interestingly, diploid cells are insensitive to polyglutamines and haploid cells can escape cytostasis by hyperploidization. Using a genome-wide screen for genes required to obtain the cytostatic effect, we identify a network related to the budding process and cellular division. We observe a striking mislocalization of the septins Cdc10 and Shs1 in cells arrested by polyglutamines, suggesting that the septin ring may be a pivotal structure connecting polyglutamine toxicity and ploidy.
Expansion of polyglutamines correlates with neuronal death in Huntington’s disease. Here the authors show that, in haploid yeast cells, the toxic effect of polyglutamine expression is associated with the disruption of the septin ring and cells may escape from toxicity by hyperploidization.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23481379</pmid><doi>10.1038/ncomms2575</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2013-03, Vol.4 (1), p.1571, Article 1571 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3615466 |
source | MEDLINE; Nature Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals |
subjects | 631/208/325/2484 631/80 Bacterial Proteins - metabolism Blotting, Western Cell cycle Gene Knockout Techniques Gene Regulatory Networks - drug effects Gene Regulatory Networks - genetics Genes Genes, Fungal - genetics Genomes Genotype & phenotype Green Fluorescent Proteins - metabolism Guanidine - pharmacology Haploidy Humanities and Social Sciences Humans Huntingtons disease Luminescent Proteins - metabolism Microscopy Models, Genetic multidisciplinary Peptides - toxicity Phenotype Plasmids Ploidies Prions - metabolism Proteins Quality control Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Science Science (multidisciplinary) Septins - metabolism Toxicity Yeast |
title | A network of genes connects polyglutamine toxicity to ploidy control in yeast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20network%20of%20genes%20connects%20polyglutamine%20toxicity%20to%20ploidy%20control%20in%20yeast&rft.jtitle=Nature%20communications&rft.au=Kaiser,%20Christoph%20J.O.&rft.date=2013-03-12&rft.volume=4&rft.issue=1&rft.spage=1571&rft.pages=1571-&rft.artnum=1571&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms2575&rft_dat=%3Cproquest_pubme%3E2929069631%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1321080357&rft_id=info:pmid/23481379&rfr_iscdi=true |