A network of genes connects polyglutamine toxicity to ploidy control in yeast

Neurodegeneration is linked to protein aggregation in several human disorders. In Huntington’s disease, the length of a polyglutamine stretch in Huntingtin is correlated to neuronal death. Here we utilize a model based on glutamine stretches of 0, 30 or 56 residues in Saccharomyces cerevisiae to und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2013-03, Vol.4 (1), p.1571, Article 1571
Hauptverfasser: Kaiser, Christoph J.O., Grötzinger, Stefan W., Eckl, Julia M., Papsdorf, Katharina, Jordan, Stefan, Richter, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1571
container_title Nature communications
container_volume 4
creator Kaiser, Christoph J.O.
Grötzinger, Stefan W.
Eckl, Julia M.
Papsdorf, Katharina
Jordan, Stefan
Richter, Klaus
description Neurodegeneration is linked to protein aggregation in several human disorders. In Huntington’s disease, the length of a polyglutamine stretch in Huntingtin is correlated to neuronal death. Here we utilize a model based on glutamine stretches of 0, 30 or 56 residues in Saccharomyces cerevisiae to understand how such toxic proteins interfere with cellular physiology. A toxicity-mimicking cytostatic effect is evident from compromised colony formation upon expression of polyglutamines. Interestingly, diploid cells are insensitive to polyglutamines and haploid cells can escape cytostasis by hyperploidization. Using a genome-wide screen for genes required to obtain the cytostatic effect, we identify a network related to the budding process and cellular division. We observe a striking mislocalization of the septins Cdc10 and Shs1 in cells arrested by polyglutamines, suggesting that the septin ring may be a pivotal structure connecting polyglutamine toxicity and ploidy. Expansion of polyglutamines correlates with neuronal death in Huntington’s disease. Here the authors show that, in haploid yeast cells, the toxic effect of polyglutamine expression is associated with the disruption of the septin ring and cells may escape from toxicity by hyperploidization.
doi_str_mv 10.1038/ncomms2575
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3615466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929069631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-28f2b41525e48923aabec5f6bf47dd805cb318f6927ddc46133584a1266c0acf3</originalsourceid><addsrcrecordid>eNplkE1LAzEQhoMottRe_AES8Kas5nM3vQil-AUVL3oO2TRbt-4mNUnV_femtGrFucwM8_DOywvAMUYXGFFxabVr20B4wfdAnyCGM1wQur8z98AwhAVKRUdYMHYIeoQygWkx6oOHMbQmfjj_Cl0F58aaALWz1ugY4NI13bxZRdXW1sDoPmtdxy4NcNm4etatyehdA2sLO6NCPAIHlWqCGW77ADzfXD9N7rLp4-39ZDzNNEciZkRUpGSYE26YGBGqVGk0r_KyYsVsJhDXJcWiykckrZrlmFIumMIkzzVSuqIDcLXRXa7K1sy0STZUI5e-bpXvpFO1_Hux9Yucu3dJc8xZnieB062Ad28rE6JcuJW3ybPElGAkEOVFos42lPYuBG-qnw8YyXX68jf9BJ_sevpBv7NOwPkGCOlk58bv_Pwv9wXZ8ZE5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321080357</pqid></control><display><type>article</type><title>A network of genes connects polyglutamine toxicity to ploidy control in yeast</title><source>MEDLINE</source><source>Nature Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Kaiser, Christoph J.O. ; Grötzinger, Stefan W. ; Eckl, Julia M. ; Papsdorf, Katharina ; Jordan, Stefan ; Richter, Klaus</creator><creatorcontrib>Kaiser, Christoph J.O. ; Grötzinger, Stefan W. ; Eckl, Julia M. ; Papsdorf, Katharina ; Jordan, Stefan ; Richter, Klaus</creatorcontrib><description>Neurodegeneration is linked to protein aggregation in several human disorders. In Huntington’s disease, the length of a polyglutamine stretch in Huntingtin is correlated to neuronal death. Here we utilize a model based on glutamine stretches of 0, 30 or 56 residues in Saccharomyces cerevisiae to understand how such toxic proteins interfere with cellular physiology. A toxicity-mimicking cytostatic effect is evident from compromised colony formation upon expression of polyglutamines. Interestingly, diploid cells are insensitive to polyglutamines and haploid cells can escape cytostasis by hyperploidization. Using a genome-wide screen for genes required to obtain the cytostatic effect, we identify a network related to the budding process and cellular division. We observe a striking mislocalization of the septins Cdc10 and Shs1 in cells arrested by polyglutamines, suggesting that the septin ring may be a pivotal structure connecting polyglutamine toxicity and ploidy. Expansion of polyglutamines correlates with neuronal death in Huntington’s disease. Here the authors show that, in haploid yeast cells, the toxic effect of polyglutamine expression is associated with the disruption of the septin ring and cells may escape from toxicity by hyperploidization.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms2575</identifier><identifier>PMID: 23481379</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/325/2484 ; 631/80 ; Bacterial Proteins - metabolism ; Blotting, Western ; Cell cycle ; Gene Knockout Techniques ; Gene Regulatory Networks - drug effects ; Gene Regulatory Networks - genetics ; Genes ; Genes, Fungal - genetics ; Genomes ; Genotype &amp; phenotype ; Green Fluorescent Proteins - metabolism ; Guanidine - pharmacology ; Haploidy ; Humanities and Social Sciences ; Humans ; Huntingtons disease ; Luminescent Proteins - metabolism ; Microscopy ; Models, Genetic ; multidisciplinary ; Peptides - toxicity ; Phenotype ; Plasmids ; Ploidies ; Prions - metabolism ; Proteins ; Quality control ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Science ; Science (multidisciplinary) ; Septins - metabolism ; Toxicity ; Yeast</subject><ispartof>Nature communications, 2013-03, Vol.4 (1), p.1571, Article 1571</ispartof><rights>The Author(s) 2013</rights><rights>Copyright Nature Publishing Group Mar 2013</rights><rights>Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2013 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-28f2b41525e48923aabec5f6bf47dd805cb318f6927ddc46133584a1266c0acf3</citedby><cites>FETCH-LOGICAL-c508t-28f2b41525e48923aabec5f6bf47dd805cb318f6927ddc46133584a1266c0acf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615466/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615466/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23481379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaiser, Christoph J.O.</creatorcontrib><creatorcontrib>Grötzinger, Stefan W.</creatorcontrib><creatorcontrib>Eckl, Julia M.</creatorcontrib><creatorcontrib>Papsdorf, Katharina</creatorcontrib><creatorcontrib>Jordan, Stefan</creatorcontrib><creatorcontrib>Richter, Klaus</creatorcontrib><title>A network of genes connects polyglutamine toxicity to ploidy control in yeast</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Neurodegeneration is linked to protein aggregation in several human disorders. In Huntington’s disease, the length of a polyglutamine stretch in Huntingtin is correlated to neuronal death. Here we utilize a model based on glutamine stretches of 0, 30 or 56 residues in Saccharomyces cerevisiae to understand how such toxic proteins interfere with cellular physiology. A toxicity-mimicking cytostatic effect is evident from compromised colony formation upon expression of polyglutamines. Interestingly, diploid cells are insensitive to polyglutamines and haploid cells can escape cytostasis by hyperploidization. Using a genome-wide screen for genes required to obtain the cytostatic effect, we identify a network related to the budding process and cellular division. We observe a striking mislocalization of the septins Cdc10 and Shs1 in cells arrested by polyglutamines, suggesting that the septin ring may be a pivotal structure connecting polyglutamine toxicity and ploidy. Expansion of polyglutamines correlates with neuronal death in Huntington’s disease. Here the authors show that, in haploid yeast cells, the toxic effect of polyglutamine expression is associated with the disruption of the septin ring and cells may escape from toxicity by hyperploidization.</description><subject>631/208/325/2484</subject><subject>631/80</subject><subject>Bacterial Proteins - metabolism</subject><subject>Blotting, Western</subject><subject>Cell cycle</subject><subject>Gene Knockout Techniques</subject><subject>Gene Regulatory Networks - drug effects</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genes</subject><subject>Genes, Fungal - genetics</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Guanidine - pharmacology</subject><subject>Haploidy</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Huntingtons disease</subject><subject>Luminescent Proteins - metabolism</subject><subject>Microscopy</subject><subject>Models, Genetic</subject><subject>multidisciplinary</subject><subject>Peptides - toxicity</subject><subject>Phenotype</subject><subject>Plasmids</subject><subject>Ploidies</subject><subject>Prions - metabolism</subject><subject>Proteins</subject><subject>Quality control</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Septins - metabolism</subject><subject>Toxicity</subject><subject>Yeast</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkE1LAzEQhoMottRe_AES8Kas5nM3vQil-AUVL3oO2TRbt-4mNUnV_femtGrFucwM8_DOywvAMUYXGFFxabVr20B4wfdAnyCGM1wQur8z98AwhAVKRUdYMHYIeoQygWkx6oOHMbQmfjj_Cl0F58aaALWz1ugY4NI13bxZRdXW1sDoPmtdxy4NcNm4etatyehdA2sLO6NCPAIHlWqCGW77ADzfXD9N7rLp4-39ZDzNNEciZkRUpGSYE26YGBGqVGk0r_KyYsVsJhDXJcWiykckrZrlmFIumMIkzzVSuqIDcLXRXa7K1sy0STZUI5e-bpXvpFO1_Hux9Yucu3dJc8xZnieB062Ad28rE6JcuJW3ybPElGAkEOVFos42lPYuBG-qnw8YyXX68jf9BJ_sevpBv7NOwPkGCOlk58bv_Pwv9wXZ8ZE5</recordid><startdate>20130312</startdate><enddate>20130312</enddate><creator>Kaiser, Christoph J.O.</creator><creator>Grötzinger, Stefan W.</creator><creator>Eckl, Julia M.</creator><creator>Papsdorf, Katharina</creator><creator>Jordan, Stefan</creator><creator>Richter, Klaus</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Pub. Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20130312</creationdate><title>A network of genes connects polyglutamine toxicity to ploidy control in yeast</title><author>Kaiser, Christoph J.O. ; Grötzinger, Stefan W. ; Eckl, Julia M. ; Papsdorf, Katharina ; Jordan, Stefan ; Richter, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-28f2b41525e48923aabec5f6bf47dd805cb318f6927ddc46133584a1266c0acf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/208/325/2484</topic><topic>631/80</topic><topic>Bacterial Proteins - metabolism</topic><topic>Blotting, Western</topic><topic>Cell cycle</topic><topic>Gene Knockout Techniques</topic><topic>Gene Regulatory Networks - drug effects</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genes</topic><topic>Genes, Fungal - genetics</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Guanidine - pharmacology</topic><topic>Haploidy</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Huntingtons disease</topic><topic>Luminescent Proteins - metabolism</topic><topic>Microscopy</topic><topic>Models, Genetic</topic><topic>multidisciplinary</topic><topic>Peptides - toxicity</topic><topic>Phenotype</topic><topic>Plasmids</topic><topic>Ploidies</topic><topic>Prions - metabolism</topic><topic>Proteins</topic><topic>Quality control</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Septins - metabolism</topic><topic>Toxicity</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaiser, Christoph J.O.</creatorcontrib><creatorcontrib>Grötzinger, Stefan W.</creatorcontrib><creatorcontrib>Eckl, Julia M.</creatorcontrib><creatorcontrib>Papsdorf, Katharina</creatorcontrib><creatorcontrib>Jordan, Stefan</creatorcontrib><creatorcontrib>Richter, Klaus</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaiser, Christoph J.O.</au><au>Grötzinger, Stefan W.</au><au>Eckl, Julia M.</au><au>Papsdorf, Katharina</au><au>Jordan, Stefan</au><au>Richter, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A network of genes connects polyglutamine toxicity to ploidy control in yeast</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2013-03-12</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>1571</spage><pages>1571-</pages><artnum>1571</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Neurodegeneration is linked to protein aggregation in several human disorders. In Huntington’s disease, the length of a polyglutamine stretch in Huntingtin is correlated to neuronal death. Here we utilize a model based on glutamine stretches of 0, 30 or 56 residues in Saccharomyces cerevisiae to understand how such toxic proteins interfere with cellular physiology. A toxicity-mimicking cytostatic effect is evident from compromised colony formation upon expression of polyglutamines. Interestingly, diploid cells are insensitive to polyglutamines and haploid cells can escape cytostasis by hyperploidization. Using a genome-wide screen for genes required to obtain the cytostatic effect, we identify a network related to the budding process and cellular division. We observe a striking mislocalization of the septins Cdc10 and Shs1 in cells arrested by polyglutamines, suggesting that the septin ring may be a pivotal structure connecting polyglutamine toxicity and ploidy. Expansion of polyglutamines correlates with neuronal death in Huntington’s disease. Here the authors show that, in haploid yeast cells, the toxic effect of polyglutamine expression is associated with the disruption of the septin ring and cells may escape from toxicity by hyperploidization.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23481379</pmid><doi>10.1038/ncomms2575</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2013-03, Vol.4 (1), p.1571, Article 1571
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3615466
source MEDLINE; Nature Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects 631/208/325/2484
631/80
Bacterial Proteins - metabolism
Blotting, Western
Cell cycle
Gene Knockout Techniques
Gene Regulatory Networks - drug effects
Gene Regulatory Networks - genetics
Genes
Genes, Fungal - genetics
Genomes
Genotype & phenotype
Green Fluorescent Proteins - metabolism
Guanidine - pharmacology
Haploidy
Humanities and Social Sciences
Humans
Huntingtons disease
Luminescent Proteins - metabolism
Microscopy
Models, Genetic
multidisciplinary
Peptides - toxicity
Phenotype
Plasmids
Ploidies
Prions - metabolism
Proteins
Quality control
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Science
Science (multidisciplinary)
Septins - metabolism
Toxicity
Yeast
title A network of genes connects polyglutamine toxicity to ploidy control in yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20network%20of%20genes%20connects%20polyglutamine%20toxicity%20to%20ploidy%20control%20in%20yeast&rft.jtitle=Nature%20communications&rft.au=Kaiser,%20Christoph%20J.O.&rft.date=2013-03-12&rft.volume=4&rft.issue=1&rft.spage=1571&rft.pages=1571-&rft.artnum=1571&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms2575&rft_dat=%3Cproquest_pubme%3E2929069631%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1321080357&rft_id=info:pmid/23481379&rfr_iscdi=true