Loss of Gsx1 and Gsx2 function rescues distinct phenotypes in Dlx1/2 mutants

Mice lacking the Dlx1 and Dlx2 homeobox genes (Dlx1/2 mutants) have severe deficits in subpallial differentiation, including overexpression of the Gsx1 and Gsx2 homeobox genes. To investigate whether Gsx overexpression contributes to the Dlx1/2 mutant phenotypes, we made compound loss‐of‐function mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 2013-05, Vol.521 (7), p.1561-1584
Hauptverfasser: Wang, Bei, Long, Jason E., Flandin, Pierre, Pla, Ramon, Waclaw, Ronald R., Campbell, Kenneth, Rubenstein, John L.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1584
container_issue 7
container_start_page 1561
container_title Journal of comparative neurology (1911)
container_volume 521
creator Wang, Bei
Long, Jason E.
Flandin, Pierre
Pla, Ramon
Waclaw, Ronald R.
Campbell, Kenneth
Rubenstein, John L.R.
description Mice lacking the Dlx1 and Dlx2 homeobox genes (Dlx1/2 mutants) have severe deficits in subpallial differentiation, including overexpression of the Gsx1 and Gsx2 homeobox genes. To investigate whether Gsx overexpression contributes to the Dlx1/2 mutant phenotypes, we made compound loss‐of‐function mutants. Eliminating Gsx2 function from the Dlx1/2 mutants rescued the increased expression of Ascl1 and Hes5 (Notch signaling mediators) and Olig2 (oligodendrogenesis mediator). In addition, Dlx1/2;Gsx2 mutants, like Dlx1/2;Ascl1 mutants, exacerbated the Gsx2 and Dlx1/2 patterning and differentiation phenotypes, particularly in the lateral ganglionic eminence (LGE) caudal ganglionic eminence (CGE), and septum, including loss of GAD1 expression. On the other hand, eliminating Gsx1 function from the Dlx1/2 mutants (Dlx1/2;Gsx1 mutants) did not severely exacerbate their phenotype; on the contrary, it resulted in a partial rescue of medial ganglionic eminence (MGE) properties, including interneuron migration to the cortex. Thus, despite their redundant properties, Gsx1 and ‐2 have distinct interactions with Dlx1 and ‐2. Gsx2 interaction is strongest in the LGE, CGE, and septum, whereas the Gsx1 interaction is strongest in the MGE. From these studies, and earlier studies, we present a model of the transcriptional network that regulates early steps of subcortical development. J. Comp. Neurol. 521:1561–1584, 2013. © 2012 Wiley Periodicals, Inc. Dlx1/2 mutant mice have deficits in subpallial differentiation, including overexpression of Gsx1 and Gsx2. To investigate whether Gsx overexpression contributes to the Dlx1/2−/− phenotypes, we made compound loss‐of‐function mutants. Gsx2;Dlx1/2 mutants showed partial rescue of the increased expression of Notch‐signaling mediators. On the other hand, Gsx1;Dlx1/2 mutants resulted in a partial rescue of interneuron migration to the cortex. Thus, despite their redundant properties, Gsx1 and Gsx2 have distinct interactions with Dlx1 and 2.
doi_str_mv 10.1002/cne.23242
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3615175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1318097437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5802-f00b285a8dc4eea2a05a4adc5744cd97fe2995fa2668e9a29536fd694f4d32b23</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoqFw4A8gS1zgsI2_vb4gVUkJH1EREgiJi-V4beqysYO9C8m_xyFtBEiI04xmnnntmReAxxidYYTI1EZ3Rihh5A6YYKREo1qB74JJ7eFGKSFPwINSrhFCStH2PjghFDFClJyA5TKVApOHi7LF0MRunxDox2iHkCLMrtjRFdiFMoRag5srF9Ow29RaiHDeb_GUwPU4mDiUh-CeN31xj27iKfj48uLD7FWzfLd4PTtfNpa3iDQeoRVpuWk7y5wzxCBumOksl4zZTknviFLcGyJE65QhilPhO6GYZx0lK0JPwYuD7mZcrV1nXRyy6fUmh7XJO51M0H92YrjSX9J3TQXmWPIq8OxGIKdvdb1Br0Oxru9NdGksGjPKEKb1yf-jFLdISUZlRZ_-hV6nMcd6iT0luWBC4ko9P1A219Nn54__xkjv7dTVTv3Lzso--X3RI3nrXwWmB-BH6N3u30p6dnlxK9kcJqqhbnucMPmrFpJKrj9dLvT7t-zzHM-RfkN_As2nt0o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317564671</pqid></control><display><type>article</type><title>Loss of Gsx1 and Gsx2 function rescues distinct phenotypes in Dlx1/2 mutants</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Bei ; Long, Jason E. ; Flandin, Pierre ; Pla, Ramon ; Waclaw, Ronald R. ; Campbell, Kenneth ; Rubenstein, John L.R.</creator><creatorcontrib>Wang, Bei ; Long, Jason E. ; Flandin, Pierre ; Pla, Ramon ; Waclaw, Ronald R. ; Campbell, Kenneth ; Rubenstein, John L.R.</creatorcontrib><description>Mice lacking the Dlx1 and Dlx2 homeobox genes (Dlx1/2 mutants) have severe deficits in subpallial differentiation, including overexpression of the Gsx1 and Gsx2 homeobox genes. To investigate whether Gsx overexpression contributes to the Dlx1/2 mutant phenotypes, we made compound loss‐of‐function mutants. Eliminating Gsx2 function from the Dlx1/2 mutants rescued the increased expression of Ascl1 and Hes5 (Notch signaling mediators) and Olig2 (oligodendrogenesis mediator). In addition, Dlx1/2;Gsx2 mutants, like Dlx1/2;Ascl1 mutants, exacerbated the Gsx2 and Dlx1/2 patterning and differentiation phenotypes, particularly in the lateral ganglionic eminence (LGE) caudal ganglionic eminence (CGE), and septum, including loss of GAD1 expression. On the other hand, eliminating Gsx1 function from the Dlx1/2 mutants (Dlx1/2;Gsx1 mutants) did not severely exacerbate their phenotype; on the contrary, it resulted in a partial rescue of medial ganglionic eminence (MGE) properties, including interneuron migration to the cortex. Thus, despite their redundant properties, Gsx1 and ‐2 have distinct interactions with Dlx1 and ‐2. Gsx2 interaction is strongest in the LGE, CGE, and septum, whereas the Gsx1 interaction is strongest in the MGE. From these studies, and earlier studies, we present a model of the transcriptional network that regulates early steps of subcortical development. J. Comp. Neurol. 521:1561–1584, 2013. © 2012 Wiley Periodicals, Inc. Dlx1/2 mutant mice have deficits in subpallial differentiation, including overexpression of Gsx1 and Gsx2. To investigate whether Gsx overexpression contributes to the Dlx1/2−/− phenotypes, we made compound loss‐of‐function mutants. Gsx2;Dlx1/2 mutants showed partial rescue of the increased expression of Notch‐signaling mediators. On the other hand, Gsx1;Dlx1/2 mutants resulted in a partial rescue of interneuron migration to the cortex. Thus, despite their redundant properties, Gsx1 and Gsx2 have distinct interactions with Dlx1 and 2.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.23242</identifier><identifier>PMID: 23042297</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; ASCL1 protein ; basal ganglia ; Brain - embryology ; Brain - physiology ; CGE ; development ; Dlx ; Embryo, Mammalian ; Fluorescent Antibody Technique ; GABA ; Gsx ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; In Situ Hybridization ; interneuron ; LGE ; MGE ; Mice ; Mice, Mutant Strains ; mutant ; Neurogenesis - physiology ; Phenotype ; septum ; Transcription Factors - genetics</subject><ispartof>Journal of comparative neurology (1911), 2013-05, Vol.521 (7), p.1561-1584</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>Copyright © 2012 Wiley Periodicals, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5802-f00b285a8dc4eea2a05a4adc5744cd97fe2995fa2668e9a29536fd694f4d32b23</citedby><cites>FETCH-LOGICAL-c5802-f00b285a8dc4eea2a05a4adc5744cd97fe2995fa2668e9a29536fd694f4d32b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.23242$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.23242$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23042297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Bei</creatorcontrib><creatorcontrib>Long, Jason E.</creatorcontrib><creatorcontrib>Flandin, Pierre</creatorcontrib><creatorcontrib>Pla, Ramon</creatorcontrib><creatorcontrib>Waclaw, Ronald R.</creatorcontrib><creatorcontrib>Campbell, Kenneth</creatorcontrib><creatorcontrib>Rubenstein, John L.R.</creatorcontrib><title>Loss of Gsx1 and Gsx2 function rescues distinct phenotypes in Dlx1/2 mutants</title><title>Journal of comparative neurology (1911)</title><addtitle>J. Comp. Neurol</addtitle><description>Mice lacking the Dlx1 and Dlx2 homeobox genes (Dlx1/2 mutants) have severe deficits in subpallial differentiation, including overexpression of the Gsx1 and Gsx2 homeobox genes. To investigate whether Gsx overexpression contributes to the Dlx1/2 mutant phenotypes, we made compound loss‐of‐function mutants. Eliminating Gsx2 function from the Dlx1/2 mutants rescued the increased expression of Ascl1 and Hes5 (Notch signaling mediators) and Olig2 (oligodendrogenesis mediator). In addition, Dlx1/2;Gsx2 mutants, like Dlx1/2;Ascl1 mutants, exacerbated the Gsx2 and Dlx1/2 patterning and differentiation phenotypes, particularly in the lateral ganglionic eminence (LGE) caudal ganglionic eminence (CGE), and septum, including loss of GAD1 expression. On the other hand, eliminating Gsx1 function from the Dlx1/2 mutants (Dlx1/2;Gsx1 mutants) did not severely exacerbate their phenotype; on the contrary, it resulted in a partial rescue of medial ganglionic eminence (MGE) properties, including interneuron migration to the cortex. Thus, despite their redundant properties, Gsx1 and ‐2 have distinct interactions with Dlx1 and ‐2. Gsx2 interaction is strongest in the LGE, CGE, and septum, whereas the Gsx1 interaction is strongest in the MGE. From these studies, and earlier studies, we present a model of the transcriptional network that regulates early steps of subcortical development. J. Comp. Neurol. 521:1561–1584, 2013. © 2012 Wiley Periodicals, Inc. Dlx1/2 mutant mice have deficits in subpallial differentiation, including overexpression of Gsx1 and Gsx2. To investigate whether Gsx overexpression contributes to the Dlx1/2−/− phenotypes, we made compound loss‐of‐function mutants. Gsx2;Dlx1/2 mutants showed partial rescue of the increased expression of Notch‐signaling mediators. On the other hand, Gsx1;Dlx1/2 mutants resulted in a partial rescue of interneuron migration to the cortex. Thus, despite their redundant properties, Gsx1 and Gsx2 have distinct interactions with Dlx1 and 2.</description><subject>Animals</subject><subject>ASCL1 protein</subject><subject>basal ganglia</subject><subject>Brain - embryology</subject><subject>Brain - physiology</subject><subject>CGE</subject><subject>development</subject><subject>Dlx</subject><subject>Embryo, Mammalian</subject><subject>Fluorescent Antibody Technique</subject><subject>GABA</subject><subject>Gsx</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>In Situ Hybridization</subject><subject>interneuron</subject><subject>LGE</subject><subject>MGE</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>mutant</subject><subject>Neurogenesis - physiology</subject><subject>Phenotype</subject><subject>septum</subject><subject>Transcription Factors - genetics</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhi0EoqFw4A8gS1zgsI2_vb4gVUkJH1EREgiJi-V4beqysYO9C8m_xyFtBEiI04xmnnntmReAxxidYYTI1EZ3Rihh5A6YYKREo1qB74JJ7eFGKSFPwINSrhFCStH2PjghFDFClJyA5TKVApOHi7LF0MRunxDox2iHkCLMrtjRFdiFMoRag5srF9Ow29RaiHDeb_GUwPU4mDiUh-CeN31xj27iKfj48uLD7FWzfLd4PTtfNpa3iDQeoRVpuWk7y5wzxCBumOksl4zZTknviFLcGyJE65QhilPhO6GYZx0lK0JPwYuD7mZcrV1nXRyy6fUmh7XJO51M0H92YrjSX9J3TQXmWPIq8OxGIKdvdb1Br0Oxru9NdGksGjPKEKb1yf-jFLdISUZlRZ_-hV6nMcd6iT0luWBC4ko9P1A219Nn54__xkjv7dTVTv3Lzso--X3RI3nrXwWmB-BH6N3u30p6dnlxK9kcJqqhbnucMPmrFpJKrj9dLvT7t-zzHM-RfkN_As2nt0o</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Wang, Bei</creator><creator>Long, Jason E.</creator><creator>Flandin, Pierre</creator><creator>Pla, Ramon</creator><creator>Waclaw, Ronald R.</creator><creator>Campbell, Kenneth</creator><creator>Rubenstein, John L.R.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130501</creationdate><title>Loss of Gsx1 and Gsx2 function rescues distinct phenotypes in Dlx1/2 mutants</title><author>Wang, Bei ; Long, Jason E. ; Flandin, Pierre ; Pla, Ramon ; Waclaw, Ronald R. ; Campbell, Kenneth ; Rubenstein, John L.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5802-f00b285a8dc4eea2a05a4adc5744cd97fe2995fa2668e9a29536fd694f4d32b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>ASCL1 protein</topic><topic>basal ganglia</topic><topic>Brain - embryology</topic><topic>Brain - physiology</topic><topic>CGE</topic><topic>development</topic><topic>Dlx</topic><topic>Embryo, Mammalian</topic><topic>Fluorescent Antibody Technique</topic><topic>GABA</topic><topic>Gsx</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>In Situ Hybridization</topic><topic>interneuron</topic><topic>LGE</topic><topic>MGE</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>mutant</topic><topic>Neurogenesis - physiology</topic><topic>Phenotype</topic><topic>septum</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bei</creatorcontrib><creatorcontrib>Long, Jason E.</creatorcontrib><creatorcontrib>Flandin, Pierre</creatorcontrib><creatorcontrib>Pla, Ramon</creatorcontrib><creatorcontrib>Waclaw, Ronald R.</creatorcontrib><creatorcontrib>Campbell, Kenneth</creatorcontrib><creatorcontrib>Rubenstein, John L.R.</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bei</au><au>Long, Jason E.</au><au>Flandin, Pierre</au><au>Pla, Ramon</au><au>Waclaw, Ronald R.</au><au>Campbell, Kenneth</au><au>Rubenstein, John L.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of Gsx1 and Gsx2 function rescues distinct phenotypes in Dlx1/2 mutants</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J. Comp. Neurol</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>521</volume><issue>7</issue><spage>1561</spage><epage>1584</epage><pages>1561-1584</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>Mice lacking the Dlx1 and Dlx2 homeobox genes (Dlx1/2 mutants) have severe deficits in subpallial differentiation, including overexpression of the Gsx1 and Gsx2 homeobox genes. To investigate whether Gsx overexpression contributes to the Dlx1/2 mutant phenotypes, we made compound loss‐of‐function mutants. Eliminating Gsx2 function from the Dlx1/2 mutants rescued the increased expression of Ascl1 and Hes5 (Notch signaling mediators) and Olig2 (oligodendrogenesis mediator). In addition, Dlx1/2;Gsx2 mutants, like Dlx1/2;Ascl1 mutants, exacerbated the Gsx2 and Dlx1/2 patterning and differentiation phenotypes, particularly in the lateral ganglionic eminence (LGE) caudal ganglionic eminence (CGE), and septum, including loss of GAD1 expression. On the other hand, eliminating Gsx1 function from the Dlx1/2 mutants (Dlx1/2;Gsx1 mutants) did not severely exacerbate their phenotype; on the contrary, it resulted in a partial rescue of medial ganglionic eminence (MGE) properties, including interneuron migration to the cortex. Thus, despite their redundant properties, Gsx1 and ‐2 have distinct interactions with Dlx1 and ‐2. Gsx2 interaction is strongest in the LGE, CGE, and septum, whereas the Gsx1 interaction is strongest in the MGE. From these studies, and earlier studies, we present a model of the transcriptional network that regulates early steps of subcortical development. J. Comp. Neurol. 521:1561–1584, 2013. © 2012 Wiley Periodicals, Inc. Dlx1/2 mutant mice have deficits in subpallial differentiation, including overexpression of Gsx1 and Gsx2. To investigate whether Gsx overexpression contributes to the Dlx1/2−/− phenotypes, we made compound loss‐of‐function mutants. Gsx2;Dlx1/2 mutants showed partial rescue of the increased expression of Notch‐signaling mediators. On the other hand, Gsx1;Dlx1/2 mutants resulted in a partial rescue of interneuron migration to the cortex. Thus, despite their redundant properties, Gsx1 and Gsx2 have distinct interactions with Dlx1 and 2.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>23042297</pmid><doi>10.1002/cne.23242</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9967
ispartof Journal of comparative neurology (1911), 2013-05, Vol.521 (7), p.1561-1584
issn 0021-9967
1096-9861
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3615175
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
ASCL1 protein
basal ganglia
Brain - embryology
Brain - physiology
CGE
development
Dlx
Embryo, Mammalian
Fluorescent Antibody Technique
GABA
Gsx
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
In Situ Hybridization
interneuron
LGE
MGE
Mice
Mice, Mutant Strains
mutant
Neurogenesis - physiology
Phenotype
septum
Transcription Factors - genetics
title Loss of Gsx1 and Gsx2 function rescues distinct phenotypes in Dlx1/2 mutants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20Gsx1%20and%20Gsx2%20function%20rescues%20distinct%20phenotypes%20in%20Dlx1/2%20mutants&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Wang,%20Bei&rft.date=2013-05-01&rft.volume=521&rft.issue=7&rft.spage=1561&rft.epage=1584&rft.pages=1561-1584&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.23242&rft_dat=%3Cproquest_pubme%3E1318097437%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317564671&rft_id=info:pmid/23042297&rfr_iscdi=true