Bioinformatic analysis of functional proteins involved in obesity associated with diabetes
The twin epidemic of diabetes and obesity pose daunting challenges worldwide. The dramatic rise in obesity-associated diabetes resulted in an alarming increase in the incidence and prevalence of obesity an important complication of diabetes. Differences among individuals in their susceptibility to b...
Gespeichert in:
Veröffentlicht in: | International journal of biomedical science 2008-03, Vol.4 (1), p.70-73 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | 1 |
container_start_page | 70 |
container_title | International journal of biomedical science |
container_volume | 4 |
creator | Rao, Allam Appa Tayaru, N Manga Thota, Hanuman Changalasetty, Suresh Babu Thota, Lalitha Saroja Gedela, Srinubabu |
description | The twin epidemic of diabetes and obesity pose daunting challenges worldwide. The dramatic rise in obesity-associated diabetes resulted in an alarming increase in the incidence and prevalence of obesity an important complication of diabetes. Differences among individuals in their susceptibility to both these conditions probably reflect their genetic constitutions. The dramatic improvements in genomic and bioinformatic resources are accelerating the pace of gene discovery. It is tempting to speculate the key susceptible genes/proteins that bridges diabetes mellitus and obesity. In this regard, we evaluated the role of several genes/proteins that are believed to be involved in the evolution of obesity associated diabetes by employing multiple sequence alignment using ClustalW tool and constructed a phylogram tree using functional protein sequences extracted from NCBI. Phylogram was constructed using Neighbor-Joining Algorithm a bioinformatic tool. Our bioinformatic analysis reports resistin gene as ominous link with obesity associated diabetes. This bioinformatic study will be useful for future studies towards therapeutic inventions of obesity associated type 2 diabetes. |
doi_str_mv | 10.59566/IJBS.2008.4070 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3614673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1352279637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-278ca542bb7fe5c34f5357baa03fb00a6d56b63907a3fa50d17a9634a9740ec83</originalsourceid><addsrcrecordid>eNpVkbtPwzAQxi0EgvKY2VBGlrQXO7abBQkqHkWVGICFxbo4NjVK4xK7Rf3vSR8gmO509933nfQj5DyDPi-4EIPx481znwIM-zlI2CO9jHOe0mEG-5se0kICPSLHIXwAcEEzekiOKBOSgyh65O3GeddY384wOp1gg_UquJB4m9hFo6Pz3SSZtz4a14TENUtfL03VNYkvTXBxlWAIXjuM3fTLxWlSOSxNNOGUHFisgznb1RPyenf7MnpIJ0_349H1JNVUyJhSOdTIc1qW0hquWW4547JEBGZLABQVF6VgBUhkFjlUmcRCsBwLmYPRQ3ZCrra-80U5M5U2TWyxVvPWzbBdKY9O_d80bqre_VIxkeVCss7gcmfQ-s-FCVHNXNCmrrExfhFUxjilssuUnXSwlerWh9Aa-xuTgdoQUWsiak1ErYl0Fxd_v_vV_yBg3xEfiaM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1352279637</pqid></control><display><type>article</type><title>Bioinformatic analysis of functional proteins involved in obesity associated with diabetes</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rao, Allam Appa ; Tayaru, N Manga ; Thota, Hanuman ; Changalasetty, Suresh Babu ; Thota, Lalitha Saroja ; Gedela, Srinubabu</creator><creatorcontrib>Rao, Allam Appa ; Tayaru, N Manga ; Thota, Hanuman ; Changalasetty, Suresh Babu ; Thota, Lalitha Saroja ; Gedela, Srinubabu ; Annamailai University, India ; International Center for Bioinformatics, Department of Computer Science and Systems Engineering, Andhra University, India ; Department of Computer Sciences and Engineering, Acharya Nagarjuna University, India</creatorcontrib><description>The twin epidemic of diabetes and obesity pose daunting challenges worldwide. The dramatic rise in obesity-associated diabetes resulted in an alarming increase in the incidence and prevalence of obesity an important complication of diabetes. Differences among individuals in their susceptibility to both these conditions probably reflect their genetic constitutions. The dramatic improvements in genomic and bioinformatic resources are accelerating the pace of gene discovery. It is tempting to speculate the key susceptible genes/proteins that bridges diabetes mellitus and obesity. In this regard, we evaluated the role of several genes/proteins that are believed to be involved in the evolution of obesity associated diabetes by employing multiple sequence alignment using ClustalW tool and constructed a phylogram tree using functional protein sequences extracted from NCBI. Phylogram was constructed using Neighbor-Joining Algorithm a bioinformatic tool. Our bioinformatic analysis reports resistin gene as ominous link with obesity associated diabetes. This bioinformatic study will be useful for future studies towards therapeutic inventions of obesity associated type 2 diabetes.</description><identifier>ISSN: 1550-9702</identifier><identifier>EISSN: 1555-2810</identifier><identifier>DOI: 10.59566/IJBS.2008.4070</identifier><identifier>PMID: 23675069</identifier><language>eng</language><publisher>United States: Master Publishing Group</publisher><ispartof>International journal of biomedical science, 2008-03, Vol.4 (1), p.70-73</ispartof><rights>Allam Appa Rao Licensee Master Publishing Group 2008 Allam Appa Rao</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-278ca542bb7fe5c34f5357baa03fb00a6d56b63907a3fa50d17a9634a9740ec83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614673/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614673/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23675069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rao, Allam Appa</creatorcontrib><creatorcontrib>Tayaru, N Manga</creatorcontrib><creatorcontrib>Thota, Hanuman</creatorcontrib><creatorcontrib>Changalasetty, Suresh Babu</creatorcontrib><creatorcontrib>Thota, Lalitha Saroja</creatorcontrib><creatorcontrib>Gedela, Srinubabu</creatorcontrib><creatorcontrib>Annamailai University, India</creatorcontrib><creatorcontrib>International Center for Bioinformatics, Department of Computer Science and Systems Engineering, Andhra University, India</creatorcontrib><creatorcontrib>Department of Computer Sciences and Engineering, Acharya Nagarjuna University, India</creatorcontrib><title>Bioinformatic analysis of functional proteins involved in obesity associated with diabetes</title><title>International journal of biomedical science</title><addtitle>Int J Biomed Sci</addtitle><description>The twin epidemic of diabetes and obesity pose daunting challenges worldwide. The dramatic rise in obesity-associated diabetes resulted in an alarming increase in the incidence and prevalence of obesity an important complication of diabetes. Differences among individuals in their susceptibility to both these conditions probably reflect their genetic constitutions. The dramatic improvements in genomic and bioinformatic resources are accelerating the pace of gene discovery. It is tempting to speculate the key susceptible genes/proteins that bridges diabetes mellitus and obesity. In this regard, we evaluated the role of several genes/proteins that are believed to be involved in the evolution of obesity associated diabetes by employing multiple sequence alignment using ClustalW tool and constructed a phylogram tree using functional protein sequences extracted from NCBI. Phylogram was constructed using Neighbor-Joining Algorithm a bioinformatic tool. Our bioinformatic analysis reports resistin gene as ominous link with obesity associated diabetes. This bioinformatic study will be useful for future studies towards therapeutic inventions of obesity associated type 2 diabetes.</description><issn>1550-9702</issn><issn>1555-2810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpVkbtPwzAQxi0EgvKY2VBGlrQXO7abBQkqHkWVGICFxbo4NjVK4xK7Rf3vSR8gmO509933nfQj5DyDPi-4EIPx481znwIM-zlI2CO9jHOe0mEG-5se0kICPSLHIXwAcEEzekiOKBOSgyh65O3GeddY384wOp1gg_UquJB4m9hFo6Pz3SSZtz4a14TENUtfL03VNYkvTXBxlWAIXjuM3fTLxWlSOSxNNOGUHFisgznb1RPyenf7MnpIJ0_349H1JNVUyJhSOdTIc1qW0hquWW4547JEBGZLABQVF6VgBUhkFjlUmcRCsBwLmYPRQ3ZCrra-80U5M5U2TWyxVvPWzbBdKY9O_d80bqre_VIxkeVCss7gcmfQ-s-FCVHNXNCmrrExfhFUxjilssuUnXSwlerWh9Aa-xuTgdoQUWsiak1ErYl0Fxd_v_vV_yBg3xEfiaM</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Rao, Allam Appa</creator><creator>Tayaru, N Manga</creator><creator>Thota, Hanuman</creator><creator>Changalasetty, Suresh Babu</creator><creator>Thota, Lalitha Saroja</creator><creator>Gedela, Srinubabu</creator><general>Master Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200803</creationdate><title>Bioinformatic analysis of functional proteins involved in obesity associated with diabetes</title><author>Rao, Allam Appa ; Tayaru, N Manga ; Thota, Hanuman ; Changalasetty, Suresh Babu ; Thota, Lalitha Saroja ; Gedela, Srinubabu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-278ca542bb7fe5c34f5357baa03fb00a6d56b63907a3fa50d17a9634a9740ec83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rao, Allam Appa</creatorcontrib><creatorcontrib>Tayaru, N Manga</creatorcontrib><creatorcontrib>Thota, Hanuman</creatorcontrib><creatorcontrib>Changalasetty, Suresh Babu</creatorcontrib><creatorcontrib>Thota, Lalitha Saroja</creatorcontrib><creatorcontrib>Gedela, Srinubabu</creatorcontrib><creatorcontrib>Annamailai University, India</creatorcontrib><creatorcontrib>International Center for Bioinformatics, Department of Computer Science and Systems Engineering, Andhra University, India</creatorcontrib><creatorcontrib>Department of Computer Sciences and Engineering, Acharya Nagarjuna University, India</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of biomedical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, Allam Appa</au><au>Tayaru, N Manga</au><au>Thota, Hanuman</au><au>Changalasetty, Suresh Babu</au><au>Thota, Lalitha Saroja</au><au>Gedela, Srinubabu</au><aucorp>Annamailai University, India</aucorp><aucorp>International Center for Bioinformatics, Department of Computer Science and Systems Engineering, Andhra University, India</aucorp><aucorp>Department of Computer Sciences and Engineering, Acharya Nagarjuna University, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinformatic analysis of functional proteins involved in obesity associated with diabetes</atitle><jtitle>International journal of biomedical science</jtitle><addtitle>Int J Biomed Sci</addtitle><date>2008-03</date><risdate>2008</risdate><volume>4</volume><issue>1</issue><spage>70</spage><epage>73</epage><pages>70-73</pages><issn>1550-9702</issn><eissn>1555-2810</eissn><abstract>The twin epidemic of diabetes and obesity pose daunting challenges worldwide. The dramatic rise in obesity-associated diabetes resulted in an alarming increase in the incidence and prevalence of obesity an important complication of diabetes. Differences among individuals in their susceptibility to both these conditions probably reflect their genetic constitutions. The dramatic improvements in genomic and bioinformatic resources are accelerating the pace of gene discovery. It is tempting to speculate the key susceptible genes/proteins that bridges diabetes mellitus and obesity. In this regard, we evaluated the role of several genes/proteins that are believed to be involved in the evolution of obesity associated diabetes by employing multiple sequence alignment using ClustalW tool and constructed a phylogram tree using functional protein sequences extracted from NCBI. Phylogram was constructed using Neighbor-Joining Algorithm a bioinformatic tool. Our bioinformatic analysis reports resistin gene as ominous link with obesity associated diabetes. This bioinformatic study will be useful for future studies towards therapeutic inventions of obesity associated type 2 diabetes.</abstract><cop>United States</cop><pub>Master Publishing Group</pub><pmid>23675069</pmid><doi>10.59566/IJBS.2008.4070</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-9702 |
ispartof | International journal of biomedical science, 2008-03, Vol.4 (1), p.70-73 |
issn | 1550-9702 1555-2810 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3614673 |
source | PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
title | Bioinformatic analysis of functional proteins involved in obesity associated with diabetes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinformatic%20analysis%20of%20functional%20proteins%20involved%20in%20obesity%20associated%20with%20diabetes&rft.jtitle=International%20journal%20of%20biomedical%20science&rft.au=Rao,%20Allam%20Appa&rft.aucorp=Annamailai%20University,%20India&rft.date=2008-03&rft.volume=4&rft.issue=1&rft.spage=70&rft.epage=73&rft.pages=70-73&rft.issn=1550-9702&rft.eissn=1555-2810&rft_id=info:doi/10.59566/IJBS.2008.4070&rft_dat=%3Cproquest_pubme%3E1352279637%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1352279637&rft_id=info:pmid/23675069&rfr_iscdi=true |