Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation
Microsporidian Nosema bombycis has received much attention because the pébrine disease of domesticated silkworms results in great economic losses in the silkworm industry. So far, no effective treatment could be found for pébrine. Compared to other known Nosema parasites, N. bombycis can unusually p...
Gespeichert in:
Veröffentlicht in: | BMC genomics 2013-03, Vol.14 (1), p.186-186, Article 186 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | 1 |
container_start_page | 186 |
container_title | BMC genomics |
container_volume | 14 |
creator | Pan, Guoqing Xu, Jinshan Li, Tian Xia, Qingyou Liu, Shao-Lun Zhang, Guojie Li, Songgang Li, Chunfeng Liu, Handeng Yang, Liu Liu, Tie Zhang, Xi Wu, Zhengli Fan, Wei Dang, Xiaoqun Xiang, Heng Tao, Meilin Li, Yanhong Hu, Junhua Li, Zhi Lin, Lipeng Luo, Jie Geng, Lina Wang, LinLing Long, Mengxian Wan, Yongji He, Ningjia Zhang, Ze Lu, Cheng Keeling, Patrick J Wang, Jun Xiang, Zhonghuai Zhou, Zeyang |
description | Microsporidian Nosema bombycis has received much attention because the pébrine disease of domesticated silkworms results in great economic losses in the silkworm industry. So far, no effective treatment could be found for pébrine. Compared to other known Nosema parasites, N. bombycis can unusually parasitize a broad range of hosts. To gain some insights into the underlying genetic mechanism of pathological ability and host range expansion in this parasite, a comparative genomic approach is conducted. The genome of two Nosema parasites, N. bombycis and N. antheraeae (an obligatory parasite to undomesticated silkworms Antheraea pernyi), were sequenced and compared with their distantly related species, N. ceranae (an obligatory parasite to honey bees).
Our comparative genomics analysis show that the N. bombycis genome has greatly expanded due to the following three molecular mechanisms: 1) the proliferation of host-derived transposable elements, 2) the acquisition of many horizontally transferred genes from bacteria, and 3) the production of abundnant gene duplications. To our knowledge, duplicated genes derived not only from small-scale events (e.g., tandem duplications) but also from large-scale events (e.g., segmental duplications) have never been seen so abundant in any reported microsporidia genomes. Our relative dating analysis further indicated that these duplication events have arisen recently over very short evolutionary time. Furthermore, several duplicated genes involving in the cytotoxic metabolic pathway were found to undergo positive selection, suggestive of the role of duplicated genes on the adaptive evolution of pathogenic ability.
Genome expansion is rarely considered as the evolutionary outcome acting on those highly reduced and compact parasitic microsporidian genomes. This study, for the first time, demonstrates that the parasitic genomes can expand, instead of shrink, through several common molecular mechanisms such as gene duplication, horizontal gene transfer, and transposable element expansion. We also showed that the duplicated genes can serve as raw materials for evolutionary innovations possibly contributing to the increase of pathologenic ability. Based on our research, we propose that duplicated genes of N. bombycis should be treated as primary targets for treatment designs against pébrine. The genome data and annotation information of N. bombycis and N.antheraeae were submitted to GenBank (Accession numbers ACJZ01000001 -ACJZ010 |
doi_str_mv | 10.1186/1471-2164-14-186 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3614468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534556278</galeid><sourcerecordid>A534556278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-f861ddc0f2d4a6a1ad6e368861ad3d722f52865beaeae057fcf7f441ed234c4e3</originalsourceid><addsrcrecordid>eNptkt9rFDEQxxdRbK2--yQBX-rD1k02yW5fhHJYLRQEfzyHuWRyTd1N1iR3rfSfN-vVsyeSQMJ3PvMNM5mqekmbE0p7-ZbyjtaMSl7Tsnv5qDrcSY8f3A-qZyldNw3teiaeVges5afyVIjD6m4RxgkiZLdBskIfRqcTCZbMYnLZaZLc8P0mxJGUUAxpCtEZByTiBmEg4AmkFLQrFsGTJeYbRL-1QoK3E_g0B8AbchVSJmBgyr_h59UTC0PCF_fnUfXt_P3Xxcf68tOHi8XZZa2F6HNte0mN0Y1lhoMECkZiK_uigmlNx5gVrJdiiVBWIzqrbWc5p2hKmZpje1S92_pO6-WIRqPPEQY1RTdC_KkCOLUf8e5KrcJGtZJyLvticHxvEMOPNaasRpc0DgN4DOukaMt6wRrG2oK-_ge9DuvoS3kzxahoeSP_UisYUDlvQ3lXz6bqrBBCSNbNz578hyrLYPmK4NG6ou8lvNlLKEzG27yCdUrq4svnfbbZsvOfpoh21w_aqHm41Dw9ap6eclNFKCmvHvZxl_Bnmtpf8wjLxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322153406</pqid></control><display><type>article</type><title>Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation</title><source>SpringerOpen</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>SpringerLink Journals - AutoHoldings</source><source>PubMed Central Open Access</source><creator>Pan, Guoqing ; Xu, Jinshan ; Li, Tian ; Xia, Qingyou ; Liu, Shao-Lun ; Zhang, Guojie ; Li, Songgang ; Li, Chunfeng ; Liu, Handeng ; Yang, Liu ; Liu, Tie ; Zhang, Xi ; Wu, Zhengli ; Fan, Wei ; Dang, Xiaoqun ; Xiang, Heng ; Tao, Meilin ; Li, Yanhong ; Hu, Junhua ; Li, Zhi ; Lin, Lipeng ; Luo, Jie ; Geng, Lina ; Wang, LinLing ; Long, Mengxian ; Wan, Yongji ; He, Ningjia ; Zhang, Ze ; Lu, Cheng ; Keeling, Patrick J ; Wang, Jun ; Xiang, Zhonghuai ; Zhou, Zeyang</creator><creatorcontrib>Pan, Guoqing ; Xu, Jinshan ; Li, Tian ; Xia, Qingyou ; Liu, Shao-Lun ; Zhang, Guojie ; Li, Songgang ; Li, Chunfeng ; Liu, Handeng ; Yang, Liu ; Liu, Tie ; Zhang, Xi ; Wu, Zhengli ; Fan, Wei ; Dang, Xiaoqun ; Xiang, Heng ; Tao, Meilin ; Li, Yanhong ; Hu, Junhua ; Li, Zhi ; Lin, Lipeng ; Luo, Jie ; Geng, Lina ; Wang, LinLing ; Long, Mengxian ; Wan, Yongji ; He, Ningjia ; Zhang, Ze ; Lu, Cheng ; Keeling, Patrick J ; Wang, Jun ; Xiang, Zhonghuai ; Zhou, Zeyang</creatorcontrib><description>Microsporidian Nosema bombycis has received much attention because the pébrine disease of domesticated silkworms results in great economic losses in the silkworm industry. So far, no effective treatment could be found for pébrine. Compared to other known Nosema parasites, N. bombycis can unusually parasitize a broad range of hosts. To gain some insights into the underlying genetic mechanism of pathological ability and host range expansion in this parasite, a comparative genomic approach is conducted. The genome of two Nosema parasites, N. bombycis and N. antheraeae (an obligatory parasite to undomesticated silkworms Antheraea pernyi), were sequenced and compared with their distantly related species, N. ceranae (an obligatory parasite to honey bees).
Our comparative genomics analysis show that the N. bombycis genome has greatly expanded due to the following three molecular mechanisms: 1) the proliferation of host-derived transposable elements, 2) the acquisition of many horizontally transferred genes from bacteria, and 3) the production of abundnant gene duplications. To our knowledge, duplicated genes derived not only from small-scale events (e.g., tandem duplications) but also from large-scale events (e.g., segmental duplications) have never been seen so abundant in any reported microsporidia genomes. Our relative dating analysis further indicated that these duplication events have arisen recently over very short evolutionary time. Furthermore, several duplicated genes involving in the cytotoxic metabolic pathway were found to undergo positive selection, suggestive of the role of duplicated genes on the adaptive evolution of pathogenic ability.
Genome expansion is rarely considered as the evolutionary outcome acting on those highly reduced and compact parasitic microsporidian genomes. This study, for the first time, demonstrates that the parasitic genomes can expand, instead of shrink, through several common molecular mechanisms such as gene duplication, horizontal gene transfer, and transposable element expansion. We also showed that the duplicated genes can serve as raw materials for evolutionary innovations possibly contributing to the increase of pathologenic ability. Based on our research, we propose that duplicated genes of N. bombycis should be treated as primary targets for treatment designs against pébrine. The genome data and annotation information of N. bombycis and N.antheraeae were submitted to GenBank (Accession numbers ACJZ01000001 -ACJZ01003558).</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/1471-2164-14-186</identifier><identifier>PMID: 23496955</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Animals ; Antheraea pernyi ; Apis mellifera ; Base Sequence ; Bees ; Bioinformatics ; Bombyx - genetics ; Bombyx - parasitology ; Bombyx mori ; DNA Transposable Elements ; Evolution & development ; Expansion ; Gene Duplication ; Gene Transfer, Horizontal ; Genetic aspects ; Genetic research ; Genetics ; Genomes ; Genomics ; Health aspects ; Host-Parasite Interactions - genetics ; Infections ; Life sciences ; Microsporidia ; Microsporidia - genetics ; Microsporidia - pathogenicity ; Molecular Sequence Annotation ; Molecular Sequence Data ; Nosema ; Nosema bombycis ; Parasites ; Silkworms ; Transposons</subject><ispartof>BMC genomics, 2013-03, Vol.14 (1), p.186-186, Article 186</ispartof><rights>COPYRIGHT 2013 BioMed Central Ltd.</rights><rights>2013 Pan et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2013 Pan et al.; licensee BioMed Central Ltd. 2013 Pan et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-f861ddc0f2d4a6a1ad6e368861ad3d722f52865beaeae057fcf7f441ed234c4e3</citedby><cites>FETCH-LOGICAL-c558t-f861ddc0f2d4a6a1ad6e368861ad3d722f52865beaeae057fcf7f441ed234c4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614468/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614468/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23496955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Guoqing</creatorcontrib><creatorcontrib>Xu, Jinshan</creatorcontrib><creatorcontrib>Li, Tian</creatorcontrib><creatorcontrib>Xia, Qingyou</creatorcontrib><creatorcontrib>Liu, Shao-Lun</creatorcontrib><creatorcontrib>Zhang, Guojie</creatorcontrib><creatorcontrib>Li, Songgang</creatorcontrib><creatorcontrib>Li, Chunfeng</creatorcontrib><creatorcontrib>Liu, Handeng</creatorcontrib><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Liu, Tie</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Wu, Zhengli</creatorcontrib><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Dang, Xiaoqun</creatorcontrib><creatorcontrib>Xiang, Heng</creatorcontrib><creatorcontrib>Tao, Meilin</creatorcontrib><creatorcontrib>Li, Yanhong</creatorcontrib><creatorcontrib>Hu, Junhua</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Lin, Lipeng</creatorcontrib><creatorcontrib>Luo, Jie</creatorcontrib><creatorcontrib>Geng, Lina</creatorcontrib><creatorcontrib>Wang, LinLing</creatorcontrib><creatorcontrib>Long, Mengxian</creatorcontrib><creatorcontrib>Wan, Yongji</creatorcontrib><creatorcontrib>He, Ningjia</creatorcontrib><creatorcontrib>Zhang, Ze</creatorcontrib><creatorcontrib>Lu, Cheng</creatorcontrib><creatorcontrib>Keeling, Patrick J</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Xiang, Zhonghuai</creatorcontrib><creatorcontrib>Zhou, Zeyang</creatorcontrib><title>Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Microsporidian Nosema bombycis has received much attention because the pébrine disease of domesticated silkworms results in great economic losses in the silkworm industry. So far, no effective treatment could be found for pébrine. Compared to other known Nosema parasites, N. bombycis can unusually parasitize a broad range of hosts. To gain some insights into the underlying genetic mechanism of pathological ability and host range expansion in this parasite, a comparative genomic approach is conducted. The genome of two Nosema parasites, N. bombycis and N. antheraeae (an obligatory parasite to undomesticated silkworms Antheraea pernyi), were sequenced and compared with their distantly related species, N. ceranae (an obligatory parasite to honey bees).
Our comparative genomics analysis show that the N. bombycis genome has greatly expanded due to the following three molecular mechanisms: 1) the proliferation of host-derived transposable elements, 2) the acquisition of many horizontally transferred genes from bacteria, and 3) the production of abundnant gene duplications. To our knowledge, duplicated genes derived not only from small-scale events (e.g., tandem duplications) but also from large-scale events (e.g., segmental duplications) have never been seen so abundant in any reported microsporidia genomes. Our relative dating analysis further indicated that these duplication events have arisen recently over very short evolutionary time. Furthermore, several duplicated genes involving in the cytotoxic metabolic pathway were found to undergo positive selection, suggestive of the role of duplicated genes on the adaptive evolution of pathogenic ability.
Genome expansion is rarely considered as the evolutionary outcome acting on those highly reduced and compact parasitic microsporidian genomes. This study, for the first time, demonstrates that the parasitic genomes can expand, instead of shrink, through several common molecular mechanisms such as gene duplication, horizontal gene transfer, and transposable element expansion. We also showed that the duplicated genes can serve as raw materials for evolutionary innovations possibly contributing to the increase of pathologenic ability. Based on our research, we propose that duplicated genes of N. bombycis should be treated as primary targets for treatment designs against pébrine. The genome data and annotation information of N. bombycis and N.antheraeae were submitted to GenBank (Accession numbers ACJZ01000001 -ACJZ01003558).</description><subject>Analysis</subject><subject>Animals</subject><subject>Antheraea pernyi</subject><subject>Apis mellifera</subject><subject>Base Sequence</subject><subject>Bees</subject><subject>Bioinformatics</subject><subject>Bombyx - genetics</subject><subject>Bombyx - parasitology</subject><subject>Bombyx mori</subject><subject>DNA Transposable Elements</subject><subject>Evolution & development</subject><subject>Expansion</subject><subject>Gene Duplication</subject><subject>Gene Transfer, Horizontal</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Host-Parasite Interactions - genetics</subject><subject>Infections</subject><subject>Life sciences</subject><subject>Microsporidia</subject><subject>Microsporidia - genetics</subject><subject>Microsporidia - pathogenicity</subject><subject>Molecular Sequence Annotation</subject><subject>Molecular Sequence Data</subject><subject>Nosema</subject><subject>Nosema bombycis</subject><subject>Parasites</subject><subject>Silkworms</subject><subject>Transposons</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkt9rFDEQxxdRbK2--yQBX-rD1k02yW5fhHJYLRQEfzyHuWRyTd1N1iR3rfSfN-vVsyeSQMJ3PvMNM5mqekmbE0p7-ZbyjtaMSl7Tsnv5qDrcSY8f3A-qZyldNw3teiaeVges5afyVIjD6m4RxgkiZLdBskIfRqcTCZbMYnLZaZLc8P0mxJGUUAxpCtEZByTiBmEg4AmkFLQrFsGTJeYbRL-1QoK3E_g0B8AbchVSJmBgyr_h59UTC0PCF_fnUfXt_P3Xxcf68tOHi8XZZa2F6HNte0mN0Y1lhoMECkZiK_uigmlNx5gVrJdiiVBWIzqrbWc5p2hKmZpje1S92_pO6-WIRqPPEQY1RTdC_KkCOLUf8e5KrcJGtZJyLvticHxvEMOPNaasRpc0DgN4DOukaMt6wRrG2oK-_ge9DuvoS3kzxahoeSP_UisYUDlvQ3lXz6bqrBBCSNbNz578hyrLYPmK4NG6ou8lvNlLKEzG27yCdUrq4svnfbbZsvOfpoh21w_aqHm41Dw9ap6eclNFKCmvHvZxl_Bnmtpf8wjLxA</recordid><startdate>20130316</startdate><enddate>20130316</enddate><creator>Pan, Guoqing</creator><creator>Xu, Jinshan</creator><creator>Li, Tian</creator><creator>Xia, Qingyou</creator><creator>Liu, Shao-Lun</creator><creator>Zhang, Guojie</creator><creator>Li, Songgang</creator><creator>Li, Chunfeng</creator><creator>Liu, Handeng</creator><creator>Yang, Liu</creator><creator>Liu, Tie</creator><creator>Zhang, Xi</creator><creator>Wu, Zhengli</creator><creator>Fan, Wei</creator><creator>Dang, Xiaoqun</creator><creator>Xiang, Heng</creator><creator>Tao, Meilin</creator><creator>Li, Yanhong</creator><creator>Hu, Junhua</creator><creator>Li, Zhi</creator><creator>Lin, Lipeng</creator><creator>Luo, Jie</creator><creator>Geng, Lina</creator><creator>Wang, LinLing</creator><creator>Long, Mengxian</creator><creator>Wan, Yongji</creator><creator>He, Ningjia</creator><creator>Zhang, Ze</creator><creator>Lu, Cheng</creator><creator>Keeling, Patrick J</creator><creator>Wang, Jun</creator><creator>Xiang, Zhonghuai</creator><creator>Zhou, Zeyang</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>M7N</scope><scope>5PM</scope></search><sort><creationdate>20130316</creationdate><title>Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation</title><author>Pan, Guoqing ; Xu, Jinshan ; Li, Tian ; Xia, Qingyou ; Liu, Shao-Lun ; Zhang, Guojie ; Li, Songgang ; Li, Chunfeng ; Liu, Handeng ; Yang, Liu ; Liu, Tie ; Zhang, Xi ; Wu, Zhengli ; Fan, Wei ; Dang, Xiaoqun ; Xiang, Heng ; Tao, Meilin ; Li, Yanhong ; Hu, Junhua ; Li, Zhi ; Lin, Lipeng ; Luo, Jie ; Geng, Lina ; Wang, LinLing ; Long, Mengxian ; Wan, Yongji ; He, Ningjia ; Zhang, Ze ; Lu, Cheng ; Keeling, Patrick J ; Wang, Jun ; Xiang, Zhonghuai ; Zhou, Zeyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-f861ddc0f2d4a6a1ad6e368861ad3d722f52865beaeae057fcf7f441ed234c4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Antheraea pernyi</topic><topic>Apis mellifera</topic><topic>Base Sequence</topic><topic>Bees</topic><topic>Bioinformatics</topic><topic>Bombyx - genetics</topic><topic>Bombyx - parasitology</topic><topic>Bombyx mori</topic><topic>DNA Transposable Elements</topic><topic>Evolution & development</topic><topic>Expansion</topic><topic>Gene Duplication</topic><topic>Gene Transfer, Horizontal</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Host-Parasite Interactions - genetics</topic><topic>Infections</topic><topic>Life sciences</topic><topic>Microsporidia</topic><topic>Microsporidia - genetics</topic><topic>Microsporidia - pathogenicity</topic><topic>Molecular Sequence Annotation</topic><topic>Molecular Sequence Data</topic><topic>Nosema</topic><topic>Nosema bombycis</topic><topic>Parasites</topic><topic>Silkworms</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Guoqing</creatorcontrib><creatorcontrib>Xu, Jinshan</creatorcontrib><creatorcontrib>Li, Tian</creatorcontrib><creatorcontrib>Xia, Qingyou</creatorcontrib><creatorcontrib>Liu, Shao-Lun</creatorcontrib><creatorcontrib>Zhang, Guojie</creatorcontrib><creatorcontrib>Li, Songgang</creatorcontrib><creatorcontrib>Li, Chunfeng</creatorcontrib><creatorcontrib>Liu, Handeng</creatorcontrib><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Liu, Tie</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Wu, Zhengli</creatorcontrib><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Dang, Xiaoqun</creatorcontrib><creatorcontrib>Xiang, Heng</creatorcontrib><creatorcontrib>Tao, Meilin</creatorcontrib><creatorcontrib>Li, Yanhong</creatorcontrib><creatorcontrib>Hu, Junhua</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Lin, Lipeng</creatorcontrib><creatorcontrib>Luo, Jie</creatorcontrib><creatorcontrib>Geng, Lina</creatorcontrib><creatorcontrib>Wang, LinLing</creatorcontrib><creatorcontrib>Long, Mengxian</creatorcontrib><creatorcontrib>Wan, Yongji</creatorcontrib><creatorcontrib>He, Ningjia</creatorcontrib><creatorcontrib>Zhang, Ze</creatorcontrib><creatorcontrib>Lu, Cheng</creatorcontrib><creatorcontrib>Keeling, Patrick J</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Xiang, Zhonghuai</creatorcontrib><creatorcontrib>Zhou, Zeyang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Guoqing</au><au>Xu, Jinshan</au><au>Li, Tian</au><au>Xia, Qingyou</au><au>Liu, Shao-Lun</au><au>Zhang, Guojie</au><au>Li, Songgang</au><au>Li, Chunfeng</au><au>Liu, Handeng</au><au>Yang, Liu</au><au>Liu, Tie</au><au>Zhang, Xi</au><au>Wu, Zhengli</au><au>Fan, Wei</au><au>Dang, Xiaoqun</au><au>Xiang, Heng</au><au>Tao, Meilin</au><au>Li, Yanhong</au><au>Hu, Junhua</au><au>Li, Zhi</au><au>Lin, Lipeng</au><au>Luo, Jie</au><au>Geng, Lina</au><au>Wang, LinLing</au><au>Long, Mengxian</au><au>Wan, Yongji</au><au>He, Ningjia</au><au>Zhang, Ze</au><au>Lu, Cheng</au><au>Keeling, Patrick J</au><au>Wang, Jun</au><au>Xiang, Zhonghuai</au><au>Zhou, Zeyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2013-03-16</date><risdate>2013</risdate><volume>14</volume><issue>1</issue><spage>186</spage><epage>186</epage><pages>186-186</pages><artnum>186</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Microsporidian Nosema bombycis has received much attention because the pébrine disease of domesticated silkworms results in great economic losses in the silkworm industry. So far, no effective treatment could be found for pébrine. Compared to other known Nosema parasites, N. bombycis can unusually parasitize a broad range of hosts. To gain some insights into the underlying genetic mechanism of pathological ability and host range expansion in this parasite, a comparative genomic approach is conducted. The genome of two Nosema parasites, N. bombycis and N. antheraeae (an obligatory parasite to undomesticated silkworms Antheraea pernyi), were sequenced and compared with their distantly related species, N. ceranae (an obligatory parasite to honey bees).
Our comparative genomics analysis show that the N. bombycis genome has greatly expanded due to the following three molecular mechanisms: 1) the proliferation of host-derived transposable elements, 2) the acquisition of many horizontally transferred genes from bacteria, and 3) the production of abundnant gene duplications. To our knowledge, duplicated genes derived not only from small-scale events (e.g., tandem duplications) but also from large-scale events (e.g., segmental duplications) have never been seen so abundant in any reported microsporidia genomes. Our relative dating analysis further indicated that these duplication events have arisen recently over very short evolutionary time. Furthermore, several duplicated genes involving in the cytotoxic metabolic pathway were found to undergo positive selection, suggestive of the role of duplicated genes on the adaptive evolution of pathogenic ability.
Genome expansion is rarely considered as the evolutionary outcome acting on those highly reduced and compact parasitic microsporidian genomes. This study, for the first time, demonstrates that the parasitic genomes can expand, instead of shrink, through several common molecular mechanisms such as gene duplication, horizontal gene transfer, and transposable element expansion. We also showed that the duplicated genes can serve as raw materials for evolutionary innovations possibly contributing to the increase of pathologenic ability. Based on our research, we propose that duplicated genes of N. bombycis should be treated as primary targets for treatment designs against pébrine. The genome data and annotation information of N. bombycis and N.antheraeae were submitted to GenBank (Accession numbers ACJZ01000001 -ACJZ01003558).</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>23496955</pmid><doi>10.1186/1471-2164-14-186</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2164 |
ispartof | BMC genomics, 2013-03, Vol.14 (1), p.186-186, Article 186 |
issn | 1471-2164 1471-2164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3614468 |
source | SpringerOpen; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library; SpringerLink Journals - AutoHoldings; PubMed Central Open Access |
subjects | Analysis Animals Antheraea pernyi Apis mellifera Base Sequence Bees Bioinformatics Bombyx - genetics Bombyx - parasitology Bombyx mori DNA Transposable Elements Evolution & development Expansion Gene Duplication Gene Transfer, Horizontal Genetic aspects Genetic research Genetics Genomes Genomics Health aspects Host-Parasite Interactions - genetics Infections Life sciences Microsporidia Microsporidia - genetics Microsporidia - pathogenicity Molecular Sequence Annotation Molecular Sequence Data Nosema Nosema bombycis Parasites Silkworms Transposons |
title | Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20genomics%20of%20parasitic%20silkworm%20microsporidia%20reveal%20an%20association%20between%20genome%20expansion%20and%20host%20adaptation&rft.jtitle=BMC%20genomics&rft.au=Pan,%20Guoqing&rft.date=2013-03-16&rft.volume=14&rft.issue=1&rft.spage=186&rft.epage=186&rft.pages=186-186&rft.artnum=186&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/1471-2164-14-186&rft_dat=%3Cgale_pubme%3EA534556278%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1322153406&rft_id=info:pmid/23496955&rft_galeid=A534556278&rfr_iscdi=true |