A variance component based multi-marker association test using family and unrelated data
Incorporating family data in genetic association studies has become increasingly appreciated, especially for its potential value in testing rare variants. We introduce here a variance-component based association test that can test multiple common or rare variants jointly using both family and unrela...
Gespeichert in:
Veröffentlicht in: | BMC genetics 2013-03, Vol.14 (1), p.17-17, Article 17 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | BMC genetics |
container_volume | 14 |
creator | Wang, Xuefeng Morris, Nathan J Zhu, Xiaofeng Elston, Robert C |
description | Incorporating family data in genetic association studies has become increasingly appreciated, especially for its potential value in testing rare variants. We introduce here a variance-component based association test that can test multiple common or rare variants jointly using both family and unrelated samples.
The proposed approach implemented in our R package aggregates or collapses the information across a region based on genetic similarity instead of genotype scores, which avoids the power loss when the effects are in different directions or have different association strengths. The method is also able to effectively leverage the LD information in a region and it can produce a test statistic with an adaptively estimated number of degrees of freedom. Our method can readily allow for the adjustment of non-genetic contributions to the familial similarity, as well as multiple covariates.
We demonstrate through simulations that the proposed method achieves good performance in terms of Type I error control and statistical power. The method is implemented in the R package "fassoc", which provides a useful tool for data analysis and exploration. |
doi_str_mv | 10.1186/1471-2156-14-17 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3614458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534549529</galeid><sourcerecordid>A534549529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-7cd4473c7ed138d0c0813373ab3f861b7eaa024713fcfd8072b125317c2cd3cd3</originalsourceid><addsrcrecordid>eNqNkstrFTEUh4Motl5du5OAG11MOyfJTDIb4VJ8FAoFX7gLmSRzTZ1JbpNMsf-9GVuvveKiJJDDyfc7nBdCz6E-AhDtMTAOFYGmrYBVwB-gw53n4R37AD1J6aKugQvCHqMDQlnHiegO0bc1vlLRKa8t1mHaBm99xr1K1uBpHrOrJhV_2IhVSkE7lV3wONuU8Zyc3-BBTW68xsobPPtoR5WL0KisnqJHgxqTfXb7rtCXd28_n3yozs7fn56szyrdiC5XXBvGONXcGqDC1LoWQCmnqqeDaKHnVqmalDrooAcjak56IA0Frok2tNwVenMTdzv3kzW6pB_VKLfRlcSvZVBO7v94911uwpWkLTDWiBLg1W2AGC7nUpmcXNJ2HJW3YU4SKBENIXXb3QelvGNdqWCFXv6DXoQ5-tKJhQLeCiDdX2qjRiudH0JJUS9B5bqhrGFd85s6-g9VjrGT02Vigyv-PcHrPUFhsv2ZN2pOSZ5--nh_9vzrPnt8w-oYUop22LUZarnso1w2Ti4bVywJvChe3J3Ojv-zgPQXNsfXpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321768129</pqid></control><display><type>article</type><title>A variance component based multi-marker association test using family and unrelated data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Wang, Xuefeng ; Morris, Nathan J ; Zhu, Xiaofeng ; Elston, Robert C</creator><creatorcontrib>Wang, Xuefeng ; Morris, Nathan J ; Zhu, Xiaofeng ; Elston, Robert C</creatorcontrib><description>Incorporating family data in genetic association studies has become increasingly appreciated, especially for its potential value in testing rare variants. We introduce here a variance-component based association test that can test multiple common or rare variants jointly using both family and unrelated samples.
The proposed approach implemented in our R package aggregates or collapses the information across a region based on genetic similarity instead of genotype scores, which avoids the power loss when the effects are in different directions or have different association strengths. The method is also able to effectively leverage the LD information in a region and it can produce a test statistic with an adaptively estimated number of degrees of freedom. Our method can readily allow for the adjustment of non-genetic contributions to the familial similarity, as well as multiple covariates.
We demonstrate through simulations that the proposed method achieves good performance in terms of Type I error control and statistical power. The method is implemented in the R package "fassoc", which provides a useful tool for data analysis and exploration.</description><identifier>ISSN: 1471-2156</identifier><identifier>EISSN: 1471-2156</identifier><identifier>DOI: 10.1186/1471-2156-14-17</identifier><identifier>PMID: 23497289</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Computer Simulation ; Family ; Female ; Genetic Association Studies ; Genetic screening ; Genetic variation ; Genetics ; Genomes ; Genomics ; Genotype ; Humans ; Information management ; Male ; Methods ; Models, Genetic ; Operating systems ; Physiological aspects ; Polymorphism, Single Nucleotide ; Programming languages ; Software ; Statistical methods ; Studies</subject><ispartof>BMC genetics, 2013-03, Vol.14 (1), p.17-17, Article 17</ispartof><rights>COPYRIGHT 2013 BioMed Central Ltd.</rights><rights>2013 Wang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2013 Wang et al.; licensee BioMed Central Ltd. 2013 Wang et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-7cd4473c7ed138d0c0813373ab3f861b7eaa024713fcfd8072b125317c2cd3cd3</citedby><cites>FETCH-LOGICAL-c589t-7cd4473c7ed138d0c0813373ab3f861b7eaa024713fcfd8072b125317c2cd3cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614458/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614458/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23497289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Morris, Nathan J</creatorcontrib><creatorcontrib>Zhu, Xiaofeng</creatorcontrib><creatorcontrib>Elston, Robert C</creatorcontrib><title>A variance component based multi-marker association test using family and unrelated data</title><title>BMC genetics</title><addtitle>BMC Genet</addtitle><description>Incorporating family data in genetic association studies has become increasingly appreciated, especially for its potential value in testing rare variants. We introduce here a variance-component based association test that can test multiple common or rare variants jointly using both family and unrelated samples.
The proposed approach implemented in our R package aggregates or collapses the information across a region based on genetic similarity instead of genotype scores, which avoids the power loss when the effects are in different directions or have different association strengths. The method is also able to effectively leverage the LD information in a region and it can produce a test statistic with an adaptively estimated number of degrees of freedom. Our method can readily allow for the adjustment of non-genetic contributions to the familial similarity, as well as multiple covariates.
We demonstrate through simulations that the proposed method achieves good performance in terms of Type I error control and statistical power. The method is implemented in the R package "fassoc", which provides a useful tool for data analysis and exploration.</description><subject>Computer Simulation</subject><subject>Family</subject><subject>Female</subject><subject>Genetic Association Studies</subject><subject>Genetic screening</subject><subject>Genetic variation</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Humans</subject><subject>Information management</subject><subject>Male</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Operating systems</subject><subject>Physiological aspects</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Programming languages</subject><subject>Software</subject><subject>Statistical methods</subject><subject>Studies</subject><issn>1471-2156</issn><issn>1471-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkstrFTEUh4Motl5du5OAG11MOyfJTDIb4VJ8FAoFX7gLmSRzTZ1JbpNMsf-9GVuvveKiJJDDyfc7nBdCz6E-AhDtMTAOFYGmrYBVwB-gw53n4R37AD1J6aKugQvCHqMDQlnHiegO0bc1vlLRKa8t1mHaBm99xr1K1uBpHrOrJhV_2IhVSkE7lV3wONuU8Zyc3-BBTW68xsobPPtoR5WL0KisnqJHgxqTfXb7rtCXd28_n3yozs7fn56szyrdiC5XXBvGONXcGqDC1LoWQCmnqqeDaKHnVqmalDrooAcjak56IA0Frok2tNwVenMTdzv3kzW6pB_VKLfRlcSvZVBO7v94911uwpWkLTDWiBLg1W2AGC7nUpmcXNJ2HJW3YU4SKBENIXXb3QelvGNdqWCFXv6DXoQ5-tKJhQLeCiDdX2qjRiudH0JJUS9B5bqhrGFd85s6-g9VjrGT02Vigyv-PcHrPUFhsv2ZN2pOSZ5--nh_9vzrPnt8w-oYUop22LUZarnso1w2Ti4bVywJvChe3J3Ojv-zgPQXNsfXpg</recordid><startdate>20130304</startdate><enddate>20130304</enddate><creator>Wang, Xuefeng</creator><creator>Morris, Nathan J</creator><creator>Zhu, Xiaofeng</creator><creator>Elston, Robert C</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130304</creationdate><title>A variance component based multi-marker association test using family and unrelated data</title><author>Wang, Xuefeng ; Morris, Nathan J ; Zhu, Xiaofeng ; Elston, Robert C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-7cd4473c7ed138d0c0813373ab3f861b7eaa024713fcfd8072b125317c2cd3cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer Simulation</topic><topic>Family</topic><topic>Female</topic><topic>Genetic Association Studies</topic><topic>Genetic screening</topic><topic>Genetic variation</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Humans</topic><topic>Information management</topic><topic>Male</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Operating systems</topic><topic>Physiological aspects</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Programming languages</topic><topic>Software</topic><topic>Statistical methods</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Morris, Nathan J</creatorcontrib><creatorcontrib>Zhu, Xiaofeng</creatorcontrib><creatorcontrib>Elston, Robert C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuefeng</au><au>Morris, Nathan J</au><au>Zhu, Xiaofeng</au><au>Elston, Robert C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A variance component based multi-marker association test using family and unrelated data</atitle><jtitle>BMC genetics</jtitle><addtitle>BMC Genet</addtitle><date>2013-03-04</date><risdate>2013</risdate><volume>14</volume><issue>1</issue><spage>17</spage><epage>17</epage><pages>17-17</pages><artnum>17</artnum><issn>1471-2156</issn><eissn>1471-2156</eissn><abstract>Incorporating family data in genetic association studies has become increasingly appreciated, especially for its potential value in testing rare variants. We introduce here a variance-component based association test that can test multiple common or rare variants jointly using both family and unrelated samples.
The proposed approach implemented in our R package aggregates or collapses the information across a region based on genetic similarity instead of genotype scores, which avoids the power loss when the effects are in different directions or have different association strengths. The method is also able to effectively leverage the LD information in a region and it can produce a test statistic with an adaptively estimated number of degrees of freedom. Our method can readily allow for the adjustment of non-genetic contributions to the familial similarity, as well as multiple covariates.
We demonstrate through simulations that the proposed method achieves good performance in terms of Type I error control and statistical power. The method is implemented in the R package "fassoc", which provides a useful tool for data analysis and exploration.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>23497289</pmid><doi>10.1186/1471-2156-14-17</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2156 |
ispartof | BMC genetics, 2013-03, Vol.14 (1), p.17-17, Article 17 |
issn | 1471-2156 1471-2156 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3614458 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; PubMed Central Open Access |
subjects | Computer Simulation Family Female Genetic Association Studies Genetic screening Genetic variation Genetics Genomes Genomics Genotype Humans Information management Male Methods Models, Genetic Operating systems Physiological aspects Polymorphism, Single Nucleotide Programming languages Software Statistical methods Studies |
title | A variance component based multi-marker association test using family and unrelated data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20variance%20component%20based%20multi-marker%20association%20test%20using%20family%20and%20unrelated%20data&rft.jtitle=BMC%20genetics&rft.au=Wang,%20Xuefeng&rft.date=2013-03-04&rft.volume=14&rft.issue=1&rft.spage=17&rft.epage=17&rft.pages=17-17&rft.artnum=17&rft.issn=1471-2156&rft.eissn=1471-2156&rft_id=info:doi/10.1186/1471-2156-14-17&rft_dat=%3Cgale_pubme%3EA534549529%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1321768129&rft_id=info:pmid/23497289&rft_galeid=A534549529&rfr_iscdi=true |