Two-way model with random cell sizes

We consider inference for row effects in the presence of possible interactions in a two-way fixed effects model when the numbers of observations are themselves random variables. Let Nij be the number of observations in the (i,j) cell, πij be the probability that a particular observation is in that c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical planning and inference 2012-11, Vol.142 (11), p.2965-2975
Hauptverfasser: Arnold, Steven F., Moschopoulos, Panagis G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2975
container_issue 11
container_start_page 2965
container_title Journal of statistical planning and inference
container_volume 142
creator Arnold, Steven F.
Moschopoulos, Panagis G.
description We consider inference for row effects in the presence of possible interactions in a two-way fixed effects model when the numbers of observations are themselves random variables. Let Nij be the number of observations in the (i,j) cell, πij be the probability that a particular observation is in that cell and μij be the expected value of an observation in that cell. We assume that the {Nij} have a joint multinomial distribution with parameters n and {πij}. Then μ¯i.=∑jπijμij/∑jπij is the expected value of a randomly chosen observation in the ith row. Hence, we consider testing that the μ¯i. are equal. With the {πij} unknown, there is no obvious sum of squares and F-ratio computed by the widely available statistical packages for testing this hypothesis. Let Y¯i‥ be the sample mean of the observations in the ith row. We show that Y¯i‥ is an MLE of μ¯i., is consistent and is conditionally unbiased. We then find the asymptotic joint distribution of the Y¯i‥ and use it to construct a sensible asymptotic size α test of the equality of the μ¯i. and asymptotic simultaneous (1−α) confidence intervals for contrasts in the μ¯i..
doi_str_mv 10.1016/j.jspi.2012.04.017
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3608410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378375812001796</els_id><sourcerecordid>1826577741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-6ec1a736b7ff2a545fc5bd8609d1db055b4390421831b5c650dd93439fb0a01b3</originalsourceid><addsrcrecordid>eNp9kE1r20AQhpeSUjtu_0AOQYcccpE6o_00lEAISVsI5JKcl9Xuql4jad1dOSb59ZVxappL5zIw8847Mw8hZwgVAoqv62qdN6GqAesKWAUoP5A5KklLRIknZA5UqpJKrmbkNOc1TCGAfyKzmnKqmJJzcvG4i-XOvBR9dL4rdmFcFckMLvaF9V1X5PDq82fysTVd9l_e8oI83d0-3vwo7x--_7y5vi8tAzGWwls0kopGtm1tOOOt5Y1TApYOXQOcN4wugdWoKDbcCg7OLelUaxswgA1dkKuD72bb9N5ZP4zJdHqTQm_Si44m6PedIaz0r_isqQDFECaDyzeDFH9vfR51H_L-DzP4uM0aVS24lJLhJK0PUptizsm3xzUIeo9Xr_Uer97j1cD0hHcaOv_3wOPIX56T4NtB4CdMz8EnnW3wg_UuJG9H7WL4n_8fWZ2LKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826577741</pqid></control><display><type>article</type><title>Two-way model with random cell sizes</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Arnold, Steven F. ; Moschopoulos, Panagis G.</creator><creatorcontrib>Arnold, Steven F. ; Moschopoulos, Panagis G.</creatorcontrib><description>We consider inference for row effects in the presence of possible interactions in a two-way fixed effects model when the numbers of observations are themselves random variables. Let Nij be the number of observations in the (i,j) cell, πij be the probability that a particular observation is in that cell and μij be the expected value of an observation in that cell. We assume that the {Nij} have a joint multinomial distribution with parameters n and {πij}. Then μ¯i.=∑jπijμij/∑jπij is the expected value of a randomly chosen observation in the ith row. Hence, we consider testing that the μ¯i. are equal. With the {πij} unknown, there is no obvious sum of squares and F-ratio computed by the widely available statistical packages for testing this hypothesis. Let Y¯i‥ be the sample mean of the observations in the ith row. We show that Y¯i‥ is an MLE of μ¯i., is consistent and is conditionally unbiased. We then find the asymptotic joint distribution of the Y¯i‥ and use it to construct a sensible asymptotic size α test of the equality of the μ¯i. and asymptotic simultaneous (1−α) confidence intervals for contrasts in the μ¯i..</description><identifier>ISSN: 0378-3758</identifier><identifier>EISSN: 1873-1171</identifier><identifier>DOI: 10.1016/j.jspi.2012.04.017</identifier><identifier>PMID: 23538487</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Analysis of variance ; Main effects ; Multinomial cell sizes ; Two-way model ; Unbalanced data</subject><ispartof>Journal of statistical planning and inference, 2012-11, Vol.142 (11), p.2965-2975</ispartof><rights>2012 Elsevier B.V.</rights><rights>2012 Elsevier B.V. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c406t-6ec1a736b7ff2a545fc5bd8609d1db055b4390421831b5c650dd93439fb0a01b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jspi.2012.04.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23538487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnold, Steven F.</creatorcontrib><creatorcontrib>Moschopoulos, Panagis G.</creatorcontrib><title>Two-way model with random cell sizes</title><title>Journal of statistical planning and inference</title><addtitle>J Stat Plan Inference</addtitle><description>We consider inference for row effects in the presence of possible interactions in a two-way fixed effects model when the numbers of observations are themselves random variables. Let Nij be the number of observations in the (i,j) cell, πij be the probability that a particular observation is in that cell and μij be the expected value of an observation in that cell. We assume that the {Nij} have a joint multinomial distribution with parameters n and {πij}. Then μ¯i.=∑jπijμij/∑jπij is the expected value of a randomly chosen observation in the ith row. Hence, we consider testing that the μ¯i. are equal. With the {πij} unknown, there is no obvious sum of squares and F-ratio computed by the widely available statistical packages for testing this hypothesis. Let Y¯i‥ be the sample mean of the observations in the ith row. We show that Y¯i‥ is an MLE of μ¯i., is consistent and is conditionally unbiased. We then find the asymptotic joint distribution of the Y¯i‥ and use it to construct a sensible asymptotic size α test of the equality of the μ¯i. and asymptotic simultaneous (1−α) confidence intervals for contrasts in the μ¯i..</description><subject>Analysis of variance</subject><subject>Main effects</subject><subject>Multinomial cell sizes</subject><subject>Two-way model</subject><subject>Unbalanced data</subject><issn>0378-3758</issn><issn>1873-1171</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r20AQhpeSUjtu_0AOQYcccpE6o_00lEAISVsI5JKcl9Xuql4jad1dOSb59ZVxappL5zIw8847Mw8hZwgVAoqv62qdN6GqAesKWAUoP5A5KklLRIknZA5UqpJKrmbkNOc1TCGAfyKzmnKqmJJzcvG4i-XOvBR9dL4rdmFcFckMLvaF9V1X5PDq82fysTVd9l_e8oI83d0-3vwo7x--_7y5vi8tAzGWwls0kopGtm1tOOOt5Y1TApYOXQOcN4wugdWoKDbcCg7OLelUaxswgA1dkKuD72bb9N5ZP4zJdHqTQm_Si44m6PedIaz0r_isqQDFECaDyzeDFH9vfR51H_L-DzP4uM0aVS24lJLhJK0PUptizsm3xzUIeo9Xr_Uer97j1cD0hHcaOv_3wOPIX56T4NtB4CdMz8EnnW3wg_UuJG9H7WL4n_8fWZ2LKQ</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Arnold, Steven F.</creator><creator>Moschopoulos, Panagis G.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201211</creationdate><title>Two-way model with random cell sizes</title><author>Arnold, Steven F. ; Moschopoulos, Panagis G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-6ec1a736b7ff2a545fc5bd8609d1db055b4390421831b5c650dd93439fb0a01b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis of variance</topic><topic>Main effects</topic><topic>Multinomial cell sizes</topic><topic>Two-way model</topic><topic>Unbalanced data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnold, Steven F.</creatorcontrib><creatorcontrib>Moschopoulos, Panagis G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of statistical planning and inference</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnold, Steven F.</au><au>Moschopoulos, Panagis G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-way model with random cell sizes</atitle><jtitle>Journal of statistical planning and inference</jtitle><addtitle>J Stat Plan Inference</addtitle><date>2012-11</date><risdate>2012</risdate><volume>142</volume><issue>11</issue><spage>2965</spage><epage>2975</epage><pages>2965-2975</pages><issn>0378-3758</issn><eissn>1873-1171</eissn><abstract>We consider inference for row effects in the presence of possible interactions in a two-way fixed effects model when the numbers of observations are themselves random variables. Let Nij be the number of observations in the (i,j) cell, πij be the probability that a particular observation is in that cell and μij be the expected value of an observation in that cell. We assume that the {Nij} have a joint multinomial distribution with parameters n and {πij}. Then μ¯i.=∑jπijμij/∑jπij is the expected value of a randomly chosen observation in the ith row. Hence, we consider testing that the μ¯i. are equal. With the {πij} unknown, there is no obvious sum of squares and F-ratio computed by the widely available statistical packages for testing this hypothesis. Let Y¯i‥ be the sample mean of the observations in the ith row. We show that Y¯i‥ is an MLE of μ¯i., is consistent and is conditionally unbiased. We then find the asymptotic joint distribution of the Y¯i‥ and use it to construct a sensible asymptotic size α test of the equality of the μ¯i. and asymptotic simultaneous (1−α) confidence intervals for contrasts in the μ¯i..</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23538487</pmid><doi>10.1016/j.jspi.2012.04.017</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-3758
ispartof Journal of statistical planning and inference, 2012-11, Vol.142 (11), p.2965-2975
issn 0378-3758
1873-1171
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3608410
source ScienceDirect Journals (5 years ago - present)
subjects Analysis of variance
Main effects
Multinomial cell sizes
Two-way model
Unbalanced data
title Two-way model with random cell sizes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-way%20model%20with%20random%20cell%20sizes&rft.jtitle=Journal%20of%20statistical%20planning%20and%20inference&rft.au=Arnold,%20Steven%20F.&rft.date=2012-11&rft.volume=142&rft.issue=11&rft.spage=2965&rft.epage=2975&rft.pages=2965-2975&rft.issn=0378-3758&rft.eissn=1873-1171&rft_id=info:doi/10.1016/j.jspi.2012.04.017&rft_dat=%3Cproquest_pubme%3E1826577741%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826577741&rft_id=info:pmid/23538487&rft_els_id=S0378375812001796&rfr_iscdi=true