Differential stem- and progenitor-cell trafficking by prostaglandin E2

Endogenous prostaglandin E 2 (PGE 2 ) is a potent regulator of haematopoietic stem cell (HSC) retention in the bone marrow; inhibition of endogenous PGE 2 signalling by non-steroidal anti-inflammatory drugs results in enhanced HSC and haematopoietic progenitor cell mobility via E-prostanoid 4 (EP4)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2013-03, Vol.495 (7441), p.365-369
Hauptverfasser: Hoggatt, Jonathan, Mohammad, Khalid S., Singh, Pratibha, Hoggatt, Amber F., Chitteti, Brahmananda R., Speth, Jennifer M., Hu, Peirong, Poteat, Bradley A., Stilger, Kayla N., Ferraro, Francesca, Silberstein, Lev, Wong, Frankie K., Farag, Sherif S., Czader, Magdalena, Milne, Ginger L., Breyer, Richard M., Serezani, Carlos H., Scadden, David T., Guise, Theresa A., Srour, Edward F., Pelus, Louis M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 369
container_issue 7441
container_start_page 365
container_title Nature (London)
container_volume 495
creator Hoggatt, Jonathan
Mohammad, Khalid S.
Singh, Pratibha
Hoggatt, Amber F.
Chitteti, Brahmananda R.
Speth, Jennifer M.
Hu, Peirong
Poteat, Bradley A.
Stilger, Kayla N.
Ferraro, Francesca
Silberstein, Lev
Wong, Frankie K.
Farag, Sherif S.
Czader, Magdalena
Milne, Ginger L.
Breyer, Richard M.
Serezani, Carlos H.
Scadden, David T.
Guise, Theresa A.
Srour, Edward F.
Pelus, Louis M.
description Endogenous prostaglandin E 2 (PGE 2 ) is a potent regulator of haematopoietic stem cell (HSC) retention in the bone marrow; inhibition of endogenous PGE 2 signalling by non-steroidal anti-inflammatory drugs results in enhanced HSC and haematopoietic progenitor cell mobility via E-prostanoid 4 (EP4) receptor antagonism. PGE 2 regulates stem-cell retention in bone marrow The haematopoietic stem cell (HSC) microenvironment supports progenitor cells producing new circulating blood cells yet prevents the inappropriate exit of immature cells into the bloodstream. This study identifies endogenous prostaglandin E 2 (PGE 2 ) as a component in the maintenance of this delicate balance. Louis M. Pelus and colleagues show that inhibition of endogenous PGE 2 signalling by nonsteroidal anti-inflammatory drugs (NSAIDs) significantly increases the release of functional haematopoietic stem and progenitors from bone marrow into the peripheral blood, with additive effects when used in conjunction with granulocyte colony-stimulating factor. Tests in primates and human volunteers suggest a strategy that might be used therapeutically to enhance transplantation survival: administration of NSAIDs (aspirin, ibuprofen and meloxicam) enhances stem-cell mobilization, with faster haematologic recovery and enhanced long-term stem-cell repopulation of haematopoietic grafts. To maintain lifelong production of blood cells, haematopoietic stem cells (HSCs) are tightly regulated by inherent programs and extrinsic regulatory signals received from their microenvironmental niche. Long-term repopulating HSCs reside in several, perhaps overlapping, niches that produce regulatory molecules and signals necessary for homeostasis and for increased output after stress or injury 1 , 2 , 3 , 4 , 5 . Despite considerable advances in the specific cellular or molecular mechanisms governing HSC–niche interactions, little is known about the regulatory function in the intact mammalian haematopoietic niche. Recently, we and others described a positive regulatory role for prostaglandin E 2 (PGE 2 ) on HSC function ex vivo 6 , 7 . Here we show that inhibition of endogenous PGE 2 by non-steroidal anti-inflammatory drug (NSAID) treatment in mice results in modest HSC egress from the bone marrow. Surprisingly, this was independent of the SDF-1–CXCR4 axis implicated in stem-cell migration. Stem and progenitor cells were found to have differing mechanisms of egress, with HSC transit to the periphery dependent on nich
doi_str_mv 10.1038/nature11929
format Article
fullrecord <record><control><sourceid>pubmed_sprin</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3606692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23485965</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1159-30f3fe2eb425d7a11685e56ffc15e4e680f61a776af1bb4bd4ca6a3ea8e018df3</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRS0EoqWwYo_yARg88SPOBgmVFpAqsYG15STj4JI6kZMi9e9JxUNlNYt752jmEHIJ7AYY17fBDtuIAHmaH5EpiExRoXR2TKaMpZoyzdWEnPX9mjEmIROnZJJyoWWu5JQsH7xzGDEM3jZJP-CGJjZUSRfbGoMf2khLbJpkiNY5X374UCfFbh_3g62bsepDskjPyYmzTY8XP3NG3paL1_kTXb08Ps_vV7QDkDnlzHGHKRYilVVmAZSWKJVzJUgUqDRzCmyWKeugKERRidIqy9FqZKArx2fk7pvbbYsNVuV4d7SN6aLf2LgzrfXmfxL8u6nbT8MVUypPR8DVIeBv89fIWLj-LvRjFGqMZt1uYxifMsDMXrg5EM6_ABZydIs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Differential stem- and progenitor-cell trafficking by prostaglandin E2</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink</source><creator>Hoggatt, Jonathan ; Mohammad, Khalid S. ; Singh, Pratibha ; Hoggatt, Amber F. ; Chitteti, Brahmananda R. ; Speth, Jennifer M. ; Hu, Peirong ; Poteat, Bradley A. ; Stilger, Kayla N. ; Ferraro, Francesca ; Silberstein, Lev ; Wong, Frankie K. ; Farag, Sherif S. ; Czader, Magdalena ; Milne, Ginger L. ; Breyer, Richard M. ; Serezani, Carlos H. ; Scadden, David T. ; Guise, Theresa A. ; Srour, Edward F. ; Pelus, Louis M.</creator><creatorcontrib>Hoggatt, Jonathan ; Mohammad, Khalid S. ; Singh, Pratibha ; Hoggatt, Amber F. ; Chitteti, Brahmananda R. ; Speth, Jennifer M. ; Hu, Peirong ; Poteat, Bradley A. ; Stilger, Kayla N. ; Ferraro, Francesca ; Silberstein, Lev ; Wong, Frankie K. ; Farag, Sherif S. ; Czader, Magdalena ; Milne, Ginger L. ; Breyer, Richard M. ; Serezani, Carlos H. ; Scadden, David T. ; Guise, Theresa A. ; Srour, Edward F. ; Pelus, Louis M.</creatorcontrib><description>Endogenous prostaglandin E 2 (PGE 2 ) is a potent regulator of haematopoietic stem cell (HSC) retention in the bone marrow; inhibition of endogenous PGE 2 signalling by non-steroidal anti-inflammatory drugs results in enhanced HSC and haematopoietic progenitor cell mobility via E-prostanoid 4 (EP4) receptor antagonism. PGE 2 regulates stem-cell retention in bone marrow The haematopoietic stem cell (HSC) microenvironment supports progenitor cells producing new circulating blood cells yet prevents the inappropriate exit of immature cells into the bloodstream. This study identifies endogenous prostaglandin E 2 (PGE 2 ) as a component in the maintenance of this delicate balance. Louis M. Pelus and colleagues show that inhibition of endogenous PGE 2 signalling by nonsteroidal anti-inflammatory drugs (NSAIDs) significantly increases the release of functional haematopoietic stem and progenitors from bone marrow into the peripheral blood, with additive effects when used in conjunction with granulocyte colony-stimulating factor. Tests in primates and human volunteers suggest a strategy that might be used therapeutically to enhance transplantation survival: administration of NSAIDs (aspirin, ibuprofen and meloxicam) enhances stem-cell mobilization, with faster haematologic recovery and enhanced long-term stem-cell repopulation of haematopoietic grafts. To maintain lifelong production of blood cells, haematopoietic stem cells (HSCs) are tightly regulated by inherent programs and extrinsic regulatory signals received from their microenvironmental niche. Long-term repopulating HSCs reside in several, perhaps overlapping, niches that produce regulatory molecules and signals necessary for homeostasis and for increased output after stress or injury 1 , 2 , 3 , 4 , 5 . Despite considerable advances in the specific cellular or molecular mechanisms governing HSC–niche interactions, little is known about the regulatory function in the intact mammalian haematopoietic niche. Recently, we and others described a positive regulatory role for prostaglandin E 2 (PGE 2 ) on HSC function ex vivo 6 , 7 . Here we show that inhibition of endogenous PGE 2 by non-steroidal anti-inflammatory drug (NSAID) treatment in mice results in modest HSC egress from the bone marrow. Surprisingly, this was independent of the SDF-1–CXCR4 axis implicated in stem-cell migration. Stem and progenitor cells were found to have differing mechanisms of egress, with HSC transit to the periphery dependent on niche attenuation and reduction in the retentive molecule osteopontin. Haematopoietic grafts mobilized with NSAIDs had superior repopulating ability and long-term engraftment. Treatment of non-human primates and healthy human volunteers confirmed NSAID-mediated egress in other species. PGE 2 receptor knockout mice demonstrated that progenitor expansion and stem/progenitor egress resulted from reduced E-prostanoid 4 (EP4) receptor signalling. These results not only uncover unique regulatory roles for EP4 signalling in HSC retention in the niche, but also define a rapidly translatable strategy to enhance transplantation therapeutically.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature11929</identifier><identifier>PMID: 23485965</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/532/1542 ; 631/532/2118/1542 ; 631/532/2139 ; Animals ; Anti-Inflammatory Agents, Non-Steroidal - pharmacology ; Cell Count ; Cell Movement - physiology ; Cells, Cultured ; Dinoprostone - metabolism ; Hematopoietic Stem Cell Mobilization ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - drug effects ; Heterocyclic Compounds - pharmacology ; Humanities and Social Sciences ; Humans ; letter ; Meloxicam ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; multidisciplinary ; Osteopontin - genetics ; Papio ; Receptors, Prostaglandin E, EP4 Subtype - genetics ; Receptors, Prostaglandin E, EP4 Subtype - metabolism ; Science ; Stem Cells - cytology ; Stem Cells - drug effects ; Thiazines - pharmacology ; Thiazoles - pharmacology</subject><ispartof>Nature (London), 2013-03, Vol.495 (7441), p.365-369</ispartof><rights>Springer Nature Limited 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p1159-30f3fe2eb425d7a11685e56ffc15e4e680f61a776af1bb4bd4ca6a3ea8e018df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature11929$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature11929$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23485965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoggatt, Jonathan</creatorcontrib><creatorcontrib>Mohammad, Khalid S.</creatorcontrib><creatorcontrib>Singh, Pratibha</creatorcontrib><creatorcontrib>Hoggatt, Amber F.</creatorcontrib><creatorcontrib>Chitteti, Brahmananda R.</creatorcontrib><creatorcontrib>Speth, Jennifer M.</creatorcontrib><creatorcontrib>Hu, Peirong</creatorcontrib><creatorcontrib>Poteat, Bradley A.</creatorcontrib><creatorcontrib>Stilger, Kayla N.</creatorcontrib><creatorcontrib>Ferraro, Francesca</creatorcontrib><creatorcontrib>Silberstein, Lev</creatorcontrib><creatorcontrib>Wong, Frankie K.</creatorcontrib><creatorcontrib>Farag, Sherif S.</creatorcontrib><creatorcontrib>Czader, Magdalena</creatorcontrib><creatorcontrib>Milne, Ginger L.</creatorcontrib><creatorcontrib>Breyer, Richard M.</creatorcontrib><creatorcontrib>Serezani, Carlos H.</creatorcontrib><creatorcontrib>Scadden, David T.</creatorcontrib><creatorcontrib>Guise, Theresa A.</creatorcontrib><creatorcontrib>Srour, Edward F.</creatorcontrib><creatorcontrib>Pelus, Louis M.</creatorcontrib><title>Differential stem- and progenitor-cell trafficking by prostaglandin E2</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Endogenous prostaglandin E 2 (PGE 2 ) is a potent regulator of haematopoietic stem cell (HSC) retention in the bone marrow; inhibition of endogenous PGE 2 signalling by non-steroidal anti-inflammatory drugs results in enhanced HSC and haematopoietic progenitor cell mobility via E-prostanoid 4 (EP4) receptor antagonism. PGE 2 regulates stem-cell retention in bone marrow The haematopoietic stem cell (HSC) microenvironment supports progenitor cells producing new circulating blood cells yet prevents the inappropriate exit of immature cells into the bloodstream. This study identifies endogenous prostaglandin E 2 (PGE 2 ) as a component in the maintenance of this delicate balance. Louis M. Pelus and colleagues show that inhibition of endogenous PGE 2 signalling by nonsteroidal anti-inflammatory drugs (NSAIDs) significantly increases the release of functional haematopoietic stem and progenitors from bone marrow into the peripheral blood, with additive effects when used in conjunction with granulocyte colony-stimulating factor. Tests in primates and human volunteers suggest a strategy that might be used therapeutically to enhance transplantation survival: administration of NSAIDs (aspirin, ibuprofen and meloxicam) enhances stem-cell mobilization, with faster haematologic recovery and enhanced long-term stem-cell repopulation of haematopoietic grafts. To maintain lifelong production of blood cells, haematopoietic stem cells (HSCs) are tightly regulated by inherent programs and extrinsic regulatory signals received from their microenvironmental niche. Long-term repopulating HSCs reside in several, perhaps overlapping, niches that produce regulatory molecules and signals necessary for homeostasis and for increased output after stress or injury 1 , 2 , 3 , 4 , 5 . Despite considerable advances in the specific cellular or molecular mechanisms governing HSC–niche interactions, little is known about the regulatory function in the intact mammalian haematopoietic niche. Recently, we and others described a positive regulatory role for prostaglandin E 2 (PGE 2 ) on HSC function ex vivo 6 , 7 . Here we show that inhibition of endogenous PGE 2 by non-steroidal anti-inflammatory drug (NSAID) treatment in mice results in modest HSC egress from the bone marrow. Surprisingly, this was independent of the SDF-1–CXCR4 axis implicated in stem-cell migration. Stem and progenitor cells were found to have differing mechanisms of egress, with HSC transit to the periphery dependent on niche attenuation and reduction in the retentive molecule osteopontin. Haematopoietic grafts mobilized with NSAIDs had superior repopulating ability and long-term engraftment. Treatment of non-human primates and healthy human volunteers confirmed NSAID-mediated egress in other species. PGE 2 receptor knockout mice demonstrated that progenitor expansion and stem/progenitor egress resulted from reduced E-prostanoid 4 (EP4) receptor signalling. These results not only uncover unique regulatory roles for EP4 signalling in HSC retention in the niche, but also define a rapidly translatable strategy to enhance transplantation therapeutically.</description><subject>631/532/1542</subject><subject>631/532/2118/1542</subject><subject>631/532/2139</subject><subject>Animals</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - pharmacology</subject><subject>Cell Count</subject><subject>Cell Movement - physiology</subject><subject>Cells, Cultured</subject><subject>Dinoprostone - metabolism</subject><subject>Hematopoietic Stem Cell Mobilization</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - drug effects</subject><subject>Heterocyclic Compounds - pharmacology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>letter</subject><subject>Meloxicam</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>multidisciplinary</subject><subject>Osteopontin - genetics</subject><subject>Papio</subject><subject>Receptors, Prostaglandin E, EP4 Subtype - genetics</subject><subject>Receptors, Prostaglandin E, EP4 Subtype - metabolism</subject><subject>Science</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Thiazines - pharmacology</subject><subject>Thiazoles - pharmacology</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkMtOwzAQRS0EoqWwYo_yARg88SPOBgmVFpAqsYG15STj4JI6kZMi9e9JxUNlNYt752jmEHIJ7AYY17fBDtuIAHmaH5EpiExRoXR2TKaMpZoyzdWEnPX9mjEmIROnZJJyoWWu5JQsH7xzGDEM3jZJP-CGJjZUSRfbGoMf2khLbJpkiNY5X374UCfFbh_3g62bsepDskjPyYmzTY8XP3NG3paL1_kTXb08Ps_vV7QDkDnlzHGHKRYilVVmAZSWKJVzJUgUqDRzCmyWKeugKERRidIqy9FqZKArx2fk7pvbbYsNVuV4d7SN6aLf2LgzrfXmfxL8u6nbT8MVUypPR8DVIeBv89fIWLj-LvRjFGqMZt1uYxifMsDMXrg5EM6_ABZydIs</recordid><startdate>20130321</startdate><enddate>20130321</enddate><creator>Hoggatt, Jonathan</creator><creator>Mohammad, Khalid S.</creator><creator>Singh, Pratibha</creator><creator>Hoggatt, Amber F.</creator><creator>Chitteti, Brahmananda R.</creator><creator>Speth, Jennifer M.</creator><creator>Hu, Peirong</creator><creator>Poteat, Bradley A.</creator><creator>Stilger, Kayla N.</creator><creator>Ferraro, Francesca</creator><creator>Silberstein, Lev</creator><creator>Wong, Frankie K.</creator><creator>Farag, Sherif S.</creator><creator>Czader, Magdalena</creator><creator>Milne, Ginger L.</creator><creator>Breyer, Richard M.</creator><creator>Serezani, Carlos H.</creator><creator>Scadden, David T.</creator><creator>Guise, Theresa A.</creator><creator>Srour, Edward F.</creator><creator>Pelus, Louis M.</creator><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>20130321</creationdate><title>Differential stem- and progenitor-cell trafficking by prostaglandin E2</title><author>Hoggatt, Jonathan ; Mohammad, Khalid S. ; Singh, Pratibha ; Hoggatt, Amber F. ; Chitteti, Brahmananda R. ; Speth, Jennifer M. ; Hu, Peirong ; Poteat, Bradley A. ; Stilger, Kayla N. ; Ferraro, Francesca ; Silberstein, Lev ; Wong, Frankie K. ; Farag, Sherif S. ; Czader, Magdalena ; Milne, Ginger L. ; Breyer, Richard M. ; Serezani, Carlos H. ; Scadden, David T. ; Guise, Theresa A. ; Srour, Edward F. ; Pelus, Louis M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1159-30f3fe2eb425d7a11685e56ffc15e4e680f61a776af1bb4bd4ca6a3ea8e018df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/532/1542</topic><topic>631/532/2118/1542</topic><topic>631/532/2139</topic><topic>Animals</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - pharmacology</topic><topic>Cell Count</topic><topic>Cell Movement - physiology</topic><topic>Cells, Cultured</topic><topic>Dinoprostone - metabolism</topic><topic>Hematopoietic Stem Cell Mobilization</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - drug effects</topic><topic>Heterocyclic Compounds - pharmacology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>letter</topic><topic>Meloxicam</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>multidisciplinary</topic><topic>Osteopontin - genetics</topic><topic>Papio</topic><topic>Receptors, Prostaglandin E, EP4 Subtype - genetics</topic><topic>Receptors, Prostaglandin E, EP4 Subtype - metabolism</topic><topic>Science</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Thiazines - pharmacology</topic><topic>Thiazoles - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoggatt, Jonathan</creatorcontrib><creatorcontrib>Mohammad, Khalid S.</creatorcontrib><creatorcontrib>Singh, Pratibha</creatorcontrib><creatorcontrib>Hoggatt, Amber F.</creatorcontrib><creatorcontrib>Chitteti, Brahmananda R.</creatorcontrib><creatorcontrib>Speth, Jennifer M.</creatorcontrib><creatorcontrib>Hu, Peirong</creatorcontrib><creatorcontrib>Poteat, Bradley A.</creatorcontrib><creatorcontrib>Stilger, Kayla N.</creatorcontrib><creatorcontrib>Ferraro, Francesca</creatorcontrib><creatorcontrib>Silberstein, Lev</creatorcontrib><creatorcontrib>Wong, Frankie K.</creatorcontrib><creatorcontrib>Farag, Sherif S.</creatorcontrib><creatorcontrib>Czader, Magdalena</creatorcontrib><creatorcontrib>Milne, Ginger L.</creatorcontrib><creatorcontrib>Breyer, Richard M.</creatorcontrib><creatorcontrib>Serezani, Carlos H.</creatorcontrib><creatorcontrib>Scadden, David T.</creatorcontrib><creatorcontrib>Guise, Theresa A.</creatorcontrib><creatorcontrib>Srour, Edward F.</creatorcontrib><creatorcontrib>Pelus, Louis M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoggatt, Jonathan</au><au>Mohammad, Khalid S.</au><au>Singh, Pratibha</au><au>Hoggatt, Amber F.</au><au>Chitteti, Brahmananda R.</au><au>Speth, Jennifer M.</au><au>Hu, Peirong</au><au>Poteat, Bradley A.</au><au>Stilger, Kayla N.</au><au>Ferraro, Francesca</au><au>Silberstein, Lev</au><au>Wong, Frankie K.</au><au>Farag, Sherif S.</au><au>Czader, Magdalena</au><au>Milne, Ginger L.</au><au>Breyer, Richard M.</au><au>Serezani, Carlos H.</au><au>Scadden, David T.</au><au>Guise, Theresa A.</au><au>Srour, Edward F.</au><au>Pelus, Louis M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential stem- and progenitor-cell trafficking by prostaglandin E2</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2013-03-21</date><risdate>2013</risdate><volume>495</volume><issue>7441</issue><spage>365</spage><epage>369</epage><pages>365-369</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Endogenous prostaglandin E 2 (PGE 2 ) is a potent regulator of haematopoietic stem cell (HSC) retention in the bone marrow; inhibition of endogenous PGE 2 signalling by non-steroidal anti-inflammatory drugs results in enhanced HSC and haematopoietic progenitor cell mobility via E-prostanoid 4 (EP4) receptor antagonism. PGE 2 regulates stem-cell retention in bone marrow The haematopoietic stem cell (HSC) microenvironment supports progenitor cells producing new circulating blood cells yet prevents the inappropriate exit of immature cells into the bloodstream. This study identifies endogenous prostaglandin E 2 (PGE 2 ) as a component in the maintenance of this delicate balance. Louis M. Pelus and colleagues show that inhibition of endogenous PGE 2 signalling by nonsteroidal anti-inflammatory drugs (NSAIDs) significantly increases the release of functional haematopoietic stem and progenitors from bone marrow into the peripheral blood, with additive effects when used in conjunction with granulocyte colony-stimulating factor. Tests in primates and human volunteers suggest a strategy that might be used therapeutically to enhance transplantation survival: administration of NSAIDs (aspirin, ibuprofen and meloxicam) enhances stem-cell mobilization, with faster haematologic recovery and enhanced long-term stem-cell repopulation of haematopoietic grafts. To maintain lifelong production of blood cells, haematopoietic stem cells (HSCs) are tightly regulated by inherent programs and extrinsic regulatory signals received from their microenvironmental niche. Long-term repopulating HSCs reside in several, perhaps overlapping, niches that produce regulatory molecules and signals necessary for homeostasis and for increased output after stress or injury 1 , 2 , 3 , 4 , 5 . Despite considerable advances in the specific cellular or molecular mechanisms governing HSC–niche interactions, little is known about the regulatory function in the intact mammalian haematopoietic niche. Recently, we and others described a positive regulatory role for prostaglandin E 2 (PGE 2 ) on HSC function ex vivo 6 , 7 . Here we show that inhibition of endogenous PGE 2 by non-steroidal anti-inflammatory drug (NSAID) treatment in mice results in modest HSC egress from the bone marrow. Surprisingly, this was independent of the SDF-1–CXCR4 axis implicated in stem-cell migration. Stem and progenitor cells were found to have differing mechanisms of egress, with HSC transit to the periphery dependent on niche attenuation and reduction in the retentive molecule osteopontin. Haematopoietic grafts mobilized with NSAIDs had superior repopulating ability and long-term engraftment. Treatment of non-human primates and healthy human volunteers confirmed NSAID-mediated egress in other species. PGE 2 receptor knockout mice demonstrated that progenitor expansion and stem/progenitor egress resulted from reduced E-prostanoid 4 (EP4) receptor signalling. These results not only uncover unique regulatory roles for EP4 signalling in HSC retention in the niche, but also define a rapidly translatable strategy to enhance transplantation therapeutically.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23485965</pmid><doi>10.1038/nature11929</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2013-03, Vol.495 (7441), p.365-369
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3606692
source MEDLINE; Nature; SpringerLink
subjects 631/532/1542
631/532/2118/1542
631/532/2139
Animals
Anti-Inflammatory Agents, Non-Steroidal - pharmacology
Cell Count
Cell Movement - physiology
Cells, Cultured
Dinoprostone - metabolism
Hematopoietic Stem Cell Mobilization
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - drug effects
Heterocyclic Compounds - pharmacology
Humanities and Social Sciences
Humans
letter
Meloxicam
Mice
Mice, Inbred C57BL
Mice, Knockout
multidisciplinary
Osteopontin - genetics
Papio
Receptors, Prostaglandin E, EP4 Subtype - genetics
Receptors, Prostaglandin E, EP4 Subtype - metabolism
Science
Stem Cells - cytology
Stem Cells - drug effects
Thiazines - pharmacology
Thiazoles - pharmacology
title Differential stem- and progenitor-cell trafficking by prostaglandin E2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20stem-%20and%20progenitor-cell%20trafficking%20by%20prostaglandin%20E2&rft.jtitle=Nature%20(London)&rft.au=Hoggatt,%20Jonathan&rft.date=2013-03-21&rft.volume=495&rft.issue=7441&rft.spage=365&rft.epage=369&rft.pages=365-369&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature11929&rft_dat=%3Cpubmed_sprin%3E23485965%3C/pubmed_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23485965&rfr_iscdi=true