Nanomaterial based self-referencing microbiosensors for cell and tissue physiology research
Physiological studies require sensitive tools to directly quantify transport kinetics in the cell/tissue spatial domain under physiological conditions. Although biosensors are capable of measuring concentration, their applications in physiological studies are limited due to the relatively low sensit...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2013-02, Vol.40 (1), p.127-134 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134 |
---|---|
container_issue | 1 |
container_start_page | 127 |
container_title | Biosensors & bioelectronics |
container_volume | 40 |
creator | Shi, Jin McLamore, Eric S. Marshall Porterfield, D. |
description | Physiological studies require sensitive tools to directly quantify transport kinetics in the cell/tissue spatial domain under physiological conditions. Although biosensors are capable of measuring concentration, their applications in physiological studies are limited due to the relatively low sensitivity, excessive drift/noise, and inability to quantify analyte transport. Nanomaterials significantly improve the electrochemical transduction of microelectrodes, and make the construction of highly sensitive microbiosensors possible. Furthermore, a novel biosensor modality, self-referencing (SR), enables direct measurement of real-time flux and drift/noise subtraction. SR microbiosensors based on nanomaterials have been used to measure the real-time analyte transport in several cell/tissue studies coupled with various stimulators/inhibitors. These studies include: glucose uptake in pancreatic β cells, cancer cells, muscle tissues, intestinal tissues and P. Aeruginosa biofilms; glutamate flux near neuronal cells; and endogenous indole-3-acetic acid flux near the surface of Zea mays roots. Results from the SR studies provide important insights into cancer, diabetes, nutrition, neurophysiology, environmental and plant physiology studies under dynamic physiological conditions, demonstrating that the SR microbiosensors are an extremely valuable tool for physiology research. |
doi_str_mv | 10.1016/j.bios.2012.06.059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3604890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566312004186</els_id><sourcerecordid>1151701605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-183232ad4b846519615a1fc5ed133cb427e8c715470c3aff882a11534b4676513</originalsourceid><addsrcrecordid>eNqFkU2P0zAQhi0EYsvCH-CAckHikuBvOxJCWq1gQVrBBU4cLMeZtK7SuHjSlfrvcdSyCxc4-TDPjGfeh5CXjDaMMv1223QxYcMp4w3VDVXtI7Ji1ohacqEekxVtla6V1uKCPEPcUkoNa-lTcsG5ta2WZkV-fPFT2vkZcvRj1XmEvkIYhzrDABmmEKd1tYshp-UvmDBlrIaUqwDjWPmpr-aIeIBqvzliTGNaH6sMCD6HzXPyZPAjwovze0m-f_zw7fpTffv15vP11W0dFLNzzazggvtedlZqxVrNlGdDUNAzIUInuQEbDFPS0CD8MFjLPWNKyE5qUxrEJXl_mrs_dDvoA0xz9qPb57jz-eiSj-7vyhQ3bp3unNBU2paWAW_OA3L6eQCc3S7icqCfIB3QMcMo55Lr9v8oU8wUOVQVlJ_QEh5iyfN-I0bdItBt3RKqWwQ6ql0RWJpe_XnLfctvYwV4fQY8Bj8O2RdH-MBpY4xtReHenTgoyd9FyA5DLD6hjxnC7PoU_7XHLxNzup0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151701605</pqid></control><display><type>article</type><title>Nanomaterial based self-referencing microbiosensors for cell and tissue physiology research</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Shi, Jin ; McLamore, Eric S. ; Marshall Porterfield, D.</creator><creatorcontrib>Shi, Jin ; McLamore, Eric S. ; Marshall Porterfield, D.</creatorcontrib><description>Physiological studies require sensitive tools to directly quantify transport kinetics in the cell/tissue spatial domain under physiological conditions. Although biosensors are capable of measuring concentration, their applications in physiological studies are limited due to the relatively low sensitivity, excessive drift/noise, and inability to quantify analyte transport. Nanomaterials significantly improve the electrochemical transduction of microelectrodes, and make the construction of highly sensitive microbiosensors possible. Furthermore, a novel biosensor modality, self-referencing (SR), enables direct measurement of real-time flux and drift/noise subtraction. SR microbiosensors based on nanomaterials have been used to measure the real-time analyte transport in several cell/tissue studies coupled with various stimulators/inhibitors. These studies include: glucose uptake in pancreatic β cells, cancer cells, muscle tissues, intestinal tissues and P. Aeruginosa biofilms; glutamate flux near neuronal cells; and endogenous indole-3-acetic acid flux near the surface of Zea mays roots. Results from the SR studies provide important insights into cancer, diabetes, nutrition, neurophysiology, environmental and plant physiology studies under dynamic physiological conditions, demonstrating that the SR microbiosensors are an extremely valuable tool for physiology research.</description><identifier>ISSN: 0956-5663</identifier><identifier>ISSN: 1873-4235</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2012.06.059</identifier><identifier>PMID: 22889647</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>biofilm ; Biological and medical sciences ; Biosensing Techniques - instrumentation ; Biosensing Techniques - standards ; Biosensor ; Biosensors ; Biotechnology ; Conductometry - instrumentation ; Conductometry - standards ; diabetes ; electrochemistry ; Electrodes ; Enzyme ; Equipment Design ; Equipment Failure Analysis ; Flux ; Fundamental and applied biological sciences. Psychology ; glucose ; glutamic acid ; indole acetic acid ; intestines ; Methods. Procedures. Technologies ; Miniaturization ; muscle tissues ; Nanomaterial ; nanomaterials ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; neoplasm cells ; neurons ; neurophysiology ; nutrition ; physiological transport ; plant physiology ; Reference Values ; Reproducibility of Results ; roots ; Self-referencing ; Sensitivity and Specificity ; Various methods and equipments ; Zea mays</subject><ispartof>Biosensors & bioelectronics, 2013-02, Vol.40 (1), p.127-134</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><rights>2012 Elsevier B.V. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-183232ad4b846519615a1fc5ed133cb427e8c715470c3aff882a11534b4676513</citedby><cites>FETCH-LOGICAL-c518t-183232ad4b846519615a1fc5ed133cb427e8c715470c3aff882a11534b4676513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956566312004186$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26777893$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22889647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Jin</creatorcontrib><creatorcontrib>McLamore, Eric S.</creatorcontrib><creatorcontrib>Marshall Porterfield, D.</creatorcontrib><title>Nanomaterial based self-referencing microbiosensors for cell and tissue physiology research</title><title>Biosensors & bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Physiological studies require sensitive tools to directly quantify transport kinetics in the cell/tissue spatial domain under physiological conditions. Although biosensors are capable of measuring concentration, their applications in physiological studies are limited due to the relatively low sensitivity, excessive drift/noise, and inability to quantify analyte transport. Nanomaterials significantly improve the electrochemical transduction of microelectrodes, and make the construction of highly sensitive microbiosensors possible. Furthermore, a novel biosensor modality, self-referencing (SR), enables direct measurement of real-time flux and drift/noise subtraction. SR microbiosensors based on nanomaterials have been used to measure the real-time analyte transport in several cell/tissue studies coupled with various stimulators/inhibitors. These studies include: glucose uptake in pancreatic β cells, cancer cells, muscle tissues, intestinal tissues and P. Aeruginosa biofilms; glutamate flux near neuronal cells; and endogenous indole-3-acetic acid flux near the surface of Zea mays roots. Results from the SR studies provide important insights into cancer, diabetes, nutrition, neurophysiology, environmental and plant physiology studies under dynamic physiological conditions, demonstrating that the SR microbiosensors are an extremely valuable tool for physiology research.</description><subject>biofilm</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - standards</subject><subject>Biosensor</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Conductometry - instrumentation</subject><subject>Conductometry - standards</subject><subject>diabetes</subject><subject>electrochemistry</subject><subject>Electrodes</subject><subject>Enzyme</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Flux</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>glucose</subject><subject>glutamic acid</subject><subject>indole acetic acid</subject><subject>intestines</subject><subject>Methods. Procedures. Technologies</subject><subject>Miniaturization</subject><subject>muscle tissues</subject><subject>Nanomaterial</subject><subject>nanomaterials</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>neoplasm cells</subject><subject>neurons</subject><subject>neurophysiology</subject><subject>nutrition</subject><subject>physiological transport</subject><subject>plant physiology</subject><subject>Reference Values</subject><subject>Reproducibility of Results</subject><subject>roots</subject><subject>Self-referencing</subject><subject>Sensitivity and Specificity</subject><subject>Various methods and equipments</subject><subject>Zea mays</subject><issn>0956-5663</issn><issn>1873-4235</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2P0zAQhi0EYsvCH-CAckHikuBvOxJCWq1gQVrBBU4cLMeZtK7SuHjSlfrvcdSyCxc4-TDPjGfeh5CXjDaMMv1223QxYcMp4w3VDVXtI7Ji1ohacqEekxVtla6V1uKCPEPcUkoNa-lTcsG5ta2WZkV-fPFT2vkZcvRj1XmEvkIYhzrDABmmEKd1tYshp-UvmDBlrIaUqwDjWPmpr-aIeIBqvzliTGNaH6sMCD6HzXPyZPAjwovze0m-f_zw7fpTffv15vP11W0dFLNzzazggvtedlZqxVrNlGdDUNAzIUInuQEbDFPS0CD8MFjLPWNKyE5qUxrEJXl_mrs_dDvoA0xz9qPb57jz-eiSj-7vyhQ3bp3unNBU2paWAW_OA3L6eQCc3S7icqCfIB3QMcMo55Lr9v8oU8wUOVQVlJ_QEh5iyfN-I0bdItBt3RKqWwQ6ql0RWJpe_XnLfctvYwV4fQY8Bj8O2RdH-MBpY4xtReHenTgoyd9FyA5DLD6hjxnC7PoU_7XHLxNzup0</recordid><startdate>20130215</startdate><enddate>20130215</enddate><creator>Shi, Jin</creator><creator>McLamore, Eric S.</creator><creator>Marshall Porterfield, D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130215</creationdate><title>Nanomaterial based self-referencing microbiosensors for cell and tissue physiology research</title><author>Shi, Jin ; McLamore, Eric S. ; Marshall Porterfield, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-183232ad4b846519615a1fc5ed133cb427e8c715470c3aff882a11534b4676513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>biofilm</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - standards</topic><topic>Biosensor</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Conductometry - instrumentation</topic><topic>Conductometry - standards</topic><topic>diabetes</topic><topic>electrochemistry</topic><topic>Electrodes</topic><topic>Enzyme</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Flux</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>glucose</topic><topic>glutamic acid</topic><topic>indole acetic acid</topic><topic>intestines</topic><topic>Methods. Procedures. Technologies</topic><topic>Miniaturization</topic><topic>muscle tissues</topic><topic>Nanomaterial</topic><topic>nanomaterials</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>neoplasm cells</topic><topic>neurons</topic><topic>neurophysiology</topic><topic>nutrition</topic><topic>physiological transport</topic><topic>plant physiology</topic><topic>Reference Values</topic><topic>Reproducibility of Results</topic><topic>roots</topic><topic>Self-referencing</topic><topic>Sensitivity and Specificity</topic><topic>Various methods and equipments</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jin</creatorcontrib><creatorcontrib>McLamore, Eric S.</creatorcontrib><creatorcontrib>Marshall Porterfield, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Jin</au><au>McLamore, Eric S.</au><au>Marshall Porterfield, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanomaterial based self-referencing microbiosensors for cell and tissue physiology research</atitle><jtitle>Biosensors & bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2013-02-15</date><risdate>2013</risdate><volume>40</volume><issue>1</issue><spage>127</spage><epage>134</epage><pages>127-134</pages><issn>0956-5663</issn><issn>1873-4235</issn><eissn>1873-4235</eissn><abstract>Physiological studies require sensitive tools to directly quantify transport kinetics in the cell/tissue spatial domain under physiological conditions. Although biosensors are capable of measuring concentration, their applications in physiological studies are limited due to the relatively low sensitivity, excessive drift/noise, and inability to quantify analyte transport. Nanomaterials significantly improve the electrochemical transduction of microelectrodes, and make the construction of highly sensitive microbiosensors possible. Furthermore, a novel biosensor modality, self-referencing (SR), enables direct measurement of real-time flux and drift/noise subtraction. SR microbiosensors based on nanomaterials have been used to measure the real-time analyte transport in several cell/tissue studies coupled with various stimulators/inhibitors. These studies include: glucose uptake in pancreatic β cells, cancer cells, muscle tissues, intestinal tissues and P. Aeruginosa biofilms; glutamate flux near neuronal cells; and endogenous indole-3-acetic acid flux near the surface of Zea mays roots. Results from the SR studies provide important insights into cancer, diabetes, nutrition, neurophysiology, environmental and plant physiology studies under dynamic physiological conditions, demonstrating that the SR microbiosensors are an extremely valuable tool for physiology research.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>22889647</pmid><doi>10.1016/j.bios.2012.06.059</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 2013-02, Vol.40 (1), p.127-134 |
issn | 0956-5663 1873-4235 1873-4235 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3604890 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | biofilm Biological and medical sciences Biosensing Techniques - instrumentation Biosensing Techniques - standards Biosensor Biosensors Biotechnology Conductometry - instrumentation Conductometry - standards diabetes electrochemistry Electrodes Enzyme Equipment Design Equipment Failure Analysis Flux Fundamental and applied biological sciences. Psychology glucose glutamic acid indole acetic acid intestines Methods. Procedures. Technologies Miniaturization muscle tissues Nanomaterial nanomaterials Nanostructures - chemistry Nanostructures - ultrastructure neoplasm cells neurons neurophysiology nutrition physiological transport plant physiology Reference Values Reproducibility of Results roots Self-referencing Sensitivity and Specificity Various methods and equipments Zea mays |
title | Nanomaterial based self-referencing microbiosensors for cell and tissue physiology research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T14%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanomaterial%20based%20self-referencing%20microbiosensors%20for%20cell%20and%20tissue%20physiology%20research&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Shi,%20Jin&rft.date=2013-02-15&rft.volume=40&rft.issue=1&rft.spage=127&rft.epage=134&rft.pages=127-134&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2012.06.059&rft_dat=%3Cproquest_pubme%3E1151701605%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1151701605&rft_id=info:pmid/22889647&rft_els_id=S0956566312004186&rfr_iscdi=true |