Analysis of different model-based approaches for estimating dFRC for real-time application

Acute Respiratory Distress Syndrome (ARDS) is characterized by inflammation, filling of the lung with fluid and the collapse of lung units. Mechanical ventilation (MV) is used to treat ARDS using positive end expiratory pressure (PEEP) to recruit and retain lung units, thus increasing pulmonary volu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical engineering online 2013-01, Vol.12 (1), p.9-9
Hauptverfasser: van Drunen, Erwin J, Chase, J Geoffrey, Chiew, Yeong Shiong, Shaw, Geoffrey M, Desaive, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 9
container_title Biomedical engineering online
container_volume 12
creator van Drunen, Erwin J
Chase, J Geoffrey
Chiew, Yeong Shiong
Shaw, Geoffrey M
Desaive, Thomas
description Acute Respiratory Distress Syndrome (ARDS) is characterized by inflammation, filling of the lung with fluid and the collapse of lung units. Mechanical ventilation (MV) is used to treat ARDS using positive end expiratory pressure (PEEP) to recruit and retain lung units, thus increasing pulmonary volume and dynamic functional residual capacity (dFRC) at the end of expiration. However, simple, non-invasive methods to estimate dFRC do not exist. Four model-based methods for estimating dFRC are compared based on their performance on two separate clinical data cohorts. The methods are derived from either stress-strain theory or a single compartment lung model, and use commonly controlled or measured parameters (lung compliance, plateau airway pressure, pressure-volume (PV) data). Population constants are determined for the stress-strain approach, which is implemented using data at both single and multiple PEEP levels. Estimated values are compared to clinically measured values to assess the reliability of each method for each cohort individually and combined. The stress-strain multiple breath (at multiple PEEP levels) method produced an overall correlation coefficient R2 = 0.966. The stress-strain single breath method produced R2 = 0.530. The single compartment single breath method produced R2 = 0.415. A combined method at single and multiple PEEP levels produced R2 = 0.963. The results suggest that model-based, single breath and non-invasive approaches to estimating dFRC may be viable in a clinical scenario, ensuring no interruption to MV. The models provide a means of estimating dFRC at any PEEP level. However, model limitations and large estimation errors limit the use of the methods at very low PEEP.
doi_str_mv 10.1186/1475-925x-12-9
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3599419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534654602</galeid><sourcerecordid>A534654602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-e8ac2b214d34316a49eed5684d587d32f79ed2bcaab17f60637604c1862a5b983</originalsourceid><addsrcrecordid>eNqFkstrFTEUhwdR7EO3LmXAjS6m5j2TjXC52FooCFVB3IRMcmaakju5JjOl_e_NTB_2SkGySDjnO7-cV1G8wegI40Z8xKzmlST8usKkks-K_XvDz-eP3nvFQUqXCBGEhHxZ7BFKRSMbsl_8Wg3a3ySXytCV1nUdRBjGchMs-KrVCWypt9sYtLmAVHYhlpBGt9GjG_rSHp-vF1sE7atshhn2zmR3GF4VLzrtE7y-uw-LH8efv6-_VGdfT07Xq7PKcCnGChptSEsws5RRLDSTAJaLhlne1JaSrpZgSWu0bnHdCSRoLRAzuXiieSsbelh8utXdTu0GrMn5R-3VNuY0440K2qldz-AuVB-uFOVSMiyzAL0V8A56UCG2Tl2RJXB5T75X2qgWFCGiUZgRxFmOen_3bQy_p9wVtXHJgPd6gDAlhSmhDaJoyfB_KK4bTgnGGX33D3oZpphntFBckpxw_ZfqtQflhi7kwswsqlacMsGZQCRTR09Q-VjYOBMG6Fy27wR82AnIzAjXY6-nlNTpt_MnxU0MKUXoHhqOkZpXU83bp-btU5iouctvH4_pAb_fRfoH2pTb7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315924197</pqid></control><display><type>article</type><title>Analysis of different model-based approaches for estimating dFRC for real-time application</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>van Drunen, Erwin J ; Chase, J Geoffrey ; Chiew, Yeong Shiong ; Shaw, Geoffrey M ; Desaive, Thomas</creator><creatorcontrib>van Drunen, Erwin J ; Chase, J Geoffrey ; Chiew, Yeong Shiong ; Shaw, Geoffrey M ; Desaive, Thomas</creatorcontrib><description>Acute Respiratory Distress Syndrome (ARDS) is characterized by inflammation, filling of the lung with fluid and the collapse of lung units. Mechanical ventilation (MV) is used to treat ARDS using positive end expiratory pressure (PEEP) to recruit and retain lung units, thus increasing pulmonary volume and dynamic functional residual capacity (dFRC) at the end of expiration. However, simple, non-invasive methods to estimate dFRC do not exist. Four model-based methods for estimating dFRC are compared based on their performance on two separate clinical data cohorts. The methods are derived from either stress-strain theory or a single compartment lung model, and use commonly controlled or measured parameters (lung compliance, plateau airway pressure, pressure-volume (PV) data). Population constants are determined for the stress-strain approach, which is implemented using data at both single and multiple PEEP levels. Estimated values are compared to clinically measured values to assess the reliability of each method for each cohort individually and combined. The stress-strain multiple breath (at multiple PEEP levels) method produced an overall correlation coefficient R2 = 0.966. The stress-strain single breath method produced R2 = 0.530. The single compartment single breath method produced R2 = 0.415. A combined method at single and multiple PEEP levels produced R2 = 0.963. The results suggest that model-based, single breath and non-invasive approaches to estimating dFRC may be viable in a clinical scenario, ensuring no interruption to MV. The models provide a means of estimating dFRC at any PEEP level. However, model limitations and large estimation errors limit the use of the methods at very low PEEP.</description><identifier>ISSN: 1475-925X</identifier><identifier>EISSN: 1475-925X</identifier><identifier>DOI: 10.1186/1475-925x-12-9</identifier><identifier>PMID: 23368982</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Acute respiratory distress syndrome ; Adult ; Aged ; Aged, 80 and over ; Anesthesia &amp; intensive care ; Anesthésie &amp; soins intensifs ; Artificial respiration ; Care and treatment ; Comparative analysis ; Complications and side effects ; Continuous positive airway pressure ; Data processing ; Female ; Functional Residual Capacity ; Human health sciences ; Humans ; Inflammation ; Internet ; Lung ; Lung - physiopathology ; Lung Volume Measurements ; Lungs ; Male ; Middle Aged ; Models, Biological ; Mortality ; Positive-Pressure Respiration - methods ; Pressure ; Recruitment ; Reproducibility of Results ; Respiration, Artificial - methods ; Respiratory distress syndrome ; Respiratory Distress Syndrome, Adult - physiopathology ; Respiratory Distress Syndrome, Adult - therapy ; Respiratory therapy ; Respiratory tract ; Retrospective Studies ; Sciences de la santé humaine ; Ventilation ; Young Adult</subject><ispartof>Biomedical engineering online, 2013-01, Vol.12 (1), p.9-9</ispartof><rights>COPYRIGHT 2013 BioMed Central Ltd.</rights><rights>2013 van Drunen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright ©2013 van Drunen et al.; licensee BioMed Central Ltd. 2013 van Drunen et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-e8ac2b214d34316a49eed5684d587d32f79ed2bcaab17f60637604c1862a5b983</citedby><cites>FETCH-LOGICAL-c596t-e8ac2b214d34316a49eed5684d587d32f79ed2bcaab17f60637604c1862a5b983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599419/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599419/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23368982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Drunen, Erwin J</creatorcontrib><creatorcontrib>Chase, J Geoffrey</creatorcontrib><creatorcontrib>Chiew, Yeong Shiong</creatorcontrib><creatorcontrib>Shaw, Geoffrey M</creatorcontrib><creatorcontrib>Desaive, Thomas</creatorcontrib><title>Analysis of different model-based approaches for estimating dFRC for real-time application</title><title>Biomedical engineering online</title><addtitle>Biomed Eng Online</addtitle><description>Acute Respiratory Distress Syndrome (ARDS) is characterized by inflammation, filling of the lung with fluid and the collapse of lung units. Mechanical ventilation (MV) is used to treat ARDS using positive end expiratory pressure (PEEP) to recruit and retain lung units, thus increasing pulmonary volume and dynamic functional residual capacity (dFRC) at the end of expiration. However, simple, non-invasive methods to estimate dFRC do not exist. Four model-based methods for estimating dFRC are compared based on their performance on two separate clinical data cohorts. The methods are derived from either stress-strain theory or a single compartment lung model, and use commonly controlled or measured parameters (lung compliance, plateau airway pressure, pressure-volume (PV) data). Population constants are determined for the stress-strain approach, which is implemented using data at both single and multiple PEEP levels. Estimated values are compared to clinically measured values to assess the reliability of each method for each cohort individually and combined. The stress-strain multiple breath (at multiple PEEP levels) method produced an overall correlation coefficient R2 = 0.966. The stress-strain single breath method produced R2 = 0.530. The single compartment single breath method produced R2 = 0.415. A combined method at single and multiple PEEP levels produced R2 = 0.963. The results suggest that model-based, single breath and non-invasive approaches to estimating dFRC may be viable in a clinical scenario, ensuring no interruption to MV. The models provide a means of estimating dFRC at any PEEP level. However, model limitations and large estimation errors limit the use of the methods at very low PEEP.</description><subject>Acute respiratory distress syndrome</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Anesthesia &amp; intensive care</subject><subject>Anesthésie &amp; soins intensifs</subject><subject>Artificial respiration</subject><subject>Care and treatment</subject><subject>Comparative analysis</subject><subject>Complications and side effects</subject><subject>Continuous positive airway pressure</subject><subject>Data processing</subject><subject>Female</subject><subject>Functional Residual Capacity</subject><subject>Human health sciences</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Internet</subject><subject>Lung</subject><subject>Lung - physiopathology</subject><subject>Lung Volume Measurements</subject><subject>Lungs</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Mortality</subject><subject>Positive-Pressure Respiration - methods</subject><subject>Pressure</subject><subject>Recruitment</subject><subject>Reproducibility of Results</subject><subject>Respiration, Artificial - methods</subject><subject>Respiratory distress syndrome</subject><subject>Respiratory Distress Syndrome, Adult - physiopathology</subject><subject>Respiratory Distress Syndrome, Adult - therapy</subject><subject>Respiratory therapy</subject><subject>Respiratory tract</subject><subject>Retrospective Studies</subject><subject>Sciences de la santé humaine</subject><subject>Ventilation</subject><subject>Young Adult</subject><issn>1475-925X</issn><issn>1475-925X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkstrFTEUhwdR7EO3LmXAjS6m5j2TjXC52FooCFVB3IRMcmaakju5JjOl_e_NTB_2SkGySDjnO7-cV1G8wegI40Z8xKzmlST8usKkks-K_XvDz-eP3nvFQUqXCBGEhHxZ7BFKRSMbsl_8Wg3a3ySXytCV1nUdRBjGchMs-KrVCWypt9sYtLmAVHYhlpBGt9GjG_rSHp-vF1sE7atshhn2zmR3GF4VLzrtE7y-uw-LH8efv6-_VGdfT07Xq7PKcCnGChptSEsws5RRLDSTAJaLhlne1JaSrpZgSWu0bnHdCSRoLRAzuXiieSsbelh8utXdTu0GrMn5R-3VNuY0440K2qldz-AuVB-uFOVSMiyzAL0V8A56UCG2Tl2RJXB5T75X2qgWFCGiUZgRxFmOen_3bQy_p9wVtXHJgPd6gDAlhSmhDaJoyfB_KK4bTgnGGX33D3oZpphntFBckpxw_ZfqtQflhi7kwswsqlacMsGZQCRTR09Q-VjYOBMG6Fy27wR82AnIzAjXY6-nlNTpt_MnxU0MKUXoHhqOkZpXU83bp-btU5iouctvH4_pAb_fRfoH2pTb7g</recordid><startdate>20130131</startdate><enddate>20130131</enddate><creator>van Drunen, Erwin J</creator><creator>Chase, J Geoffrey</creator><creator>Chiew, Yeong Shiong</creator><creator>Shaw, Geoffrey M</creator><creator>Desaive, Thomas</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>Q33</scope><scope>5PM</scope></search><sort><creationdate>20130131</creationdate><title>Analysis of different model-based approaches for estimating dFRC for real-time application</title><author>van Drunen, Erwin J ; Chase, J Geoffrey ; Chiew, Yeong Shiong ; Shaw, Geoffrey M ; Desaive, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-e8ac2b214d34316a49eed5684d587d32f79ed2bcaab17f60637604c1862a5b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acute respiratory distress syndrome</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Anesthesia &amp; intensive care</topic><topic>Anesthésie &amp; soins intensifs</topic><topic>Artificial respiration</topic><topic>Care and treatment</topic><topic>Comparative analysis</topic><topic>Complications and side effects</topic><topic>Continuous positive airway pressure</topic><topic>Data processing</topic><topic>Female</topic><topic>Functional Residual Capacity</topic><topic>Human health sciences</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Internet</topic><topic>Lung</topic><topic>Lung - physiopathology</topic><topic>Lung Volume Measurements</topic><topic>Lungs</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Mortality</topic><topic>Positive-Pressure Respiration - methods</topic><topic>Pressure</topic><topic>Recruitment</topic><topic>Reproducibility of Results</topic><topic>Respiration, Artificial - methods</topic><topic>Respiratory distress syndrome</topic><topic>Respiratory Distress Syndrome, Adult - physiopathology</topic><topic>Respiratory Distress Syndrome, Adult - therapy</topic><topic>Respiratory therapy</topic><topic>Respiratory tract</topic><topic>Retrospective Studies</topic><topic>Sciences de la santé humaine</topic><topic>Ventilation</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Drunen, Erwin J</creatorcontrib><creatorcontrib>Chase, J Geoffrey</creatorcontrib><creatorcontrib>Chiew, Yeong Shiong</creatorcontrib><creatorcontrib>Shaw, Geoffrey M</creatorcontrib><creatorcontrib>Desaive, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical engineering online</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Drunen, Erwin J</au><au>Chase, J Geoffrey</au><au>Chiew, Yeong Shiong</au><au>Shaw, Geoffrey M</au><au>Desaive, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of different model-based approaches for estimating dFRC for real-time application</atitle><jtitle>Biomedical engineering online</jtitle><addtitle>Biomed Eng Online</addtitle><date>2013-01-31</date><risdate>2013</risdate><volume>12</volume><issue>1</issue><spage>9</spage><epage>9</epage><pages>9-9</pages><issn>1475-925X</issn><eissn>1475-925X</eissn><abstract>Acute Respiratory Distress Syndrome (ARDS) is characterized by inflammation, filling of the lung with fluid and the collapse of lung units. Mechanical ventilation (MV) is used to treat ARDS using positive end expiratory pressure (PEEP) to recruit and retain lung units, thus increasing pulmonary volume and dynamic functional residual capacity (dFRC) at the end of expiration. However, simple, non-invasive methods to estimate dFRC do not exist. Four model-based methods for estimating dFRC are compared based on their performance on two separate clinical data cohorts. The methods are derived from either stress-strain theory or a single compartment lung model, and use commonly controlled or measured parameters (lung compliance, plateau airway pressure, pressure-volume (PV) data). Population constants are determined for the stress-strain approach, which is implemented using data at both single and multiple PEEP levels. Estimated values are compared to clinically measured values to assess the reliability of each method for each cohort individually and combined. The stress-strain multiple breath (at multiple PEEP levels) method produced an overall correlation coefficient R2 = 0.966. The stress-strain single breath method produced R2 = 0.530. The single compartment single breath method produced R2 = 0.415. A combined method at single and multiple PEEP levels produced R2 = 0.963. The results suggest that model-based, single breath and non-invasive approaches to estimating dFRC may be viable in a clinical scenario, ensuring no interruption to MV. The models provide a means of estimating dFRC at any PEEP level. However, model limitations and large estimation errors limit the use of the methods at very low PEEP.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>23368982</pmid><doi>10.1186/1475-925x-12-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1475-925X
ispartof Biomedical engineering online, 2013-01, Vol.12 (1), p.9-9
issn 1475-925X
1475-925X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3599419
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Acute respiratory distress syndrome
Adult
Aged
Aged, 80 and over
Anesthesia & intensive care
Anesthésie & soins intensifs
Artificial respiration
Care and treatment
Comparative analysis
Complications and side effects
Continuous positive airway pressure
Data processing
Female
Functional Residual Capacity
Human health sciences
Humans
Inflammation
Internet
Lung
Lung - physiopathology
Lung Volume Measurements
Lungs
Male
Middle Aged
Models, Biological
Mortality
Positive-Pressure Respiration - methods
Pressure
Recruitment
Reproducibility of Results
Respiration, Artificial - methods
Respiratory distress syndrome
Respiratory Distress Syndrome, Adult - physiopathology
Respiratory Distress Syndrome, Adult - therapy
Respiratory therapy
Respiratory tract
Retrospective Studies
Sciences de la santé humaine
Ventilation
Young Adult
title Analysis of different model-based approaches for estimating dFRC for real-time application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20different%20model-based%20approaches%20for%20estimating%20dFRC%20for%20real-time%20application&rft.jtitle=Biomedical%20engineering%20online&rft.au=van%20Drunen,%20Erwin%20J&rft.date=2013-01-31&rft.volume=12&rft.issue=1&rft.spage=9&rft.epage=9&rft.pages=9-9&rft.issn=1475-925X&rft.eissn=1475-925X&rft_id=info:doi/10.1186/1475-925x-12-9&rft_dat=%3Cgale_pubme%3EA534654602%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1315924197&rft_id=info:pmid/23368982&rft_galeid=A534654602&rfr_iscdi=true