Analysis of different model-based approaches for estimating dFRC for real-time application
Acute Respiratory Distress Syndrome (ARDS) is characterized by inflammation, filling of the lung with fluid and the collapse of lung units. Mechanical ventilation (MV) is used to treat ARDS using positive end expiratory pressure (PEEP) to recruit and retain lung units, thus increasing pulmonary volu...
Gespeichert in:
Veröffentlicht in: | Biomedical engineering online 2013-01, Vol.12 (1), p.9-9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 9 |
container_title | Biomedical engineering online |
container_volume | 12 |
creator | van Drunen, Erwin J Chase, J Geoffrey Chiew, Yeong Shiong Shaw, Geoffrey M Desaive, Thomas |
description | Acute Respiratory Distress Syndrome (ARDS) is characterized by inflammation, filling of the lung with fluid and the collapse of lung units. Mechanical ventilation (MV) is used to treat ARDS using positive end expiratory pressure (PEEP) to recruit and retain lung units, thus increasing pulmonary volume and dynamic functional residual capacity (dFRC) at the end of expiration. However, simple, non-invasive methods to estimate dFRC do not exist.
Four model-based methods for estimating dFRC are compared based on their performance on two separate clinical data cohorts. The methods are derived from either stress-strain theory or a single compartment lung model, and use commonly controlled or measured parameters (lung compliance, plateau airway pressure, pressure-volume (PV) data). Population constants are determined for the stress-strain approach, which is implemented using data at both single and multiple PEEP levels. Estimated values are compared to clinically measured values to assess the reliability of each method for each cohort individually and combined.
The stress-strain multiple breath (at multiple PEEP levels) method produced an overall correlation coefficient R2 = 0.966. The stress-strain single breath method produced R2 = 0.530. The single compartment single breath method produced R2 = 0.415. A combined method at single and multiple PEEP levels produced R2 = 0.963.
The results suggest that model-based, single breath and non-invasive approaches to estimating dFRC may be viable in a clinical scenario, ensuring no interruption to MV. The models provide a means of estimating dFRC at any PEEP level. However, model limitations and large estimation errors limit the use of the methods at very low PEEP. |
doi_str_mv | 10.1186/1475-925x-12-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3599419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534654602</galeid><sourcerecordid>A534654602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-e8ac2b214d34316a49eed5684d587d32f79ed2bcaab17f60637604c1862a5b983</originalsourceid><addsrcrecordid>eNqFkstrFTEUhwdR7EO3LmXAjS6m5j2TjXC52FooCFVB3IRMcmaakju5JjOl_e_NTB_2SkGySDjnO7-cV1G8wegI40Z8xKzmlST8usKkks-K_XvDz-eP3nvFQUqXCBGEhHxZ7BFKRSMbsl_8Wg3a3ySXytCV1nUdRBjGchMs-KrVCWypt9sYtLmAVHYhlpBGt9GjG_rSHp-vF1sE7atshhn2zmR3GF4VLzrtE7y-uw-LH8efv6-_VGdfT07Xq7PKcCnGChptSEsws5RRLDSTAJaLhlne1JaSrpZgSWu0bnHdCSRoLRAzuXiieSsbelh8utXdTu0GrMn5R-3VNuY0440K2qldz-AuVB-uFOVSMiyzAL0V8A56UCG2Tl2RJXB5T75X2qgWFCGiUZgRxFmOen_3bQy_p9wVtXHJgPd6gDAlhSmhDaJoyfB_KK4bTgnGGX33D3oZpphntFBckpxw_ZfqtQflhi7kwswsqlacMsGZQCRTR09Q-VjYOBMG6Fy27wR82AnIzAjXY6-nlNTpt_MnxU0MKUXoHhqOkZpXU83bp-btU5iouctvH4_pAb_fRfoH2pTb7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315924197</pqid></control><display><type>article</type><title>Analysis of different model-based approaches for estimating dFRC for real-time application</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>van Drunen, Erwin J ; Chase, J Geoffrey ; Chiew, Yeong Shiong ; Shaw, Geoffrey M ; Desaive, Thomas</creator><creatorcontrib>van Drunen, Erwin J ; Chase, J Geoffrey ; Chiew, Yeong Shiong ; Shaw, Geoffrey M ; Desaive, Thomas</creatorcontrib><description>Acute Respiratory Distress Syndrome (ARDS) is characterized by inflammation, filling of the lung with fluid and the collapse of lung units. Mechanical ventilation (MV) is used to treat ARDS using positive end expiratory pressure (PEEP) to recruit and retain lung units, thus increasing pulmonary volume and dynamic functional residual capacity (dFRC) at the end of expiration. However, simple, non-invasive methods to estimate dFRC do not exist.
Four model-based methods for estimating dFRC are compared based on their performance on two separate clinical data cohorts. The methods are derived from either stress-strain theory or a single compartment lung model, and use commonly controlled or measured parameters (lung compliance, plateau airway pressure, pressure-volume (PV) data). Population constants are determined for the stress-strain approach, which is implemented using data at both single and multiple PEEP levels. Estimated values are compared to clinically measured values to assess the reliability of each method for each cohort individually and combined.
The stress-strain multiple breath (at multiple PEEP levels) method produced an overall correlation coefficient R2 = 0.966. The stress-strain single breath method produced R2 = 0.530. The single compartment single breath method produced R2 = 0.415. A combined method at single and multiple PEEP levels produced R2 = 0.963.
The results suggest that model-based, single breath and non-invasive approaches to estimating dFRC may be viable in a clinical scenario, ensuring no interruption to MV. The models provide a means of estimating dFRC at any PEEP level. However, model limitations and large estimation errors limit the use of the methods at very low PEEP.</description><identifier>ISSN: 1475-925X</identifier><identifier>EISSN: 1475-925X</identifier><identifier>DOI: 10.1186/1475-925x-12-9</identifier><identifier>PMID: 23368982</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Acute respiratory distress syndrome ; Adult ; Aged ; Aged, 80 and over ; Anesthesia & intensive care ; Anesthésie & soins intensifs ; Artificial respiration ; Care and treatment ; Comparative analysis ; Complications and side effects ; Continuous positive airway pressure ; Data processing ; Female ; Functional Residual Capacity ; Human health sciences ; Humans ; Inflammation ; Internet ; Lung ; Lung - physiopathology ; Lung Volume Measurements ; Lungs ; Male ; Middle Aged ; Models, Biological ; Mortality ; Positive-Pressure Respiration - methods ; Pressure ; Recruitment ; Reproducibility of Results ; Respiration, Artificial - methods ; Respiratory distress syndrome ; Respiratory Distress Syndrome, Adult - physiopathology ; Respiratory Distress Syndrome, Adult - therapy ; Respiratory therapy ; Respiratory tract ; Retrospective Studies ; Sciences de la santé humaine ; Ventilation ; Young Adult</subject><ispartof>Biomedical engineering online, 2013-01, Vol.12 (1), p.9-9</ispartof><rights>COPYRIGHT 2013 BioMed Central Ltd.</rights><rights>2013 van Drunen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright ©2013 van Drunen et al.; licensee BioMed Central Ltd. 2013 van Drunen et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-e8ac2b214d34316a49eed5684d587d32f79ed2bcaab17f60637604c1862a5b983</citedby><cites>FETCH-LOGICAL-c596t-e8ac2b214d34316a49eed5684d587d32f79ed2bcaab17f60637604c1862a5b983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599419/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3599419/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23368982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Drunen, Erwin J</creatorcontrib><creatorcontrib>Chase, J Geoffrey</creatorcontrib><creatorcontrib>Chiew, Yeong Shiong</creatorcontrib><creatorcontrib>Shaw, Geoffrey M</creatorcontrib><creatorcontrib>Desaive, Thomas</creatorcontrib><title>Analysis of different model-based approaches for estimating dFRC for real-time application</title><title>Biomedical engineering online</title><addtitle>Biomed Eng Online</addtitle><description>Acute Respiratory Distress Syndrome (ARDS) is characterized by inflammation, filling of the lung with fluid and the collapse of lung units. Mechanical ventilation (MV) is used to treat ARDS using positive end expiratory pressure (PEEP) to recruit and retain lung units, thus increasing pulmonary volume and dynamic functional residual capacity (dFRC) at the end of expiration. However, simple, non-invasive methods to estimate dFRC do not exist.
Four model-based methods for estimating dFRC are compared based on their performance on two separate clinical data cohorts. The methods are derived from either stress-strain theory or a single compartment lung model, and use commonly controlled or measured parameters (lung compliance, plateau airway pressure, pressure-volume (PV) data). Population constants are determined for the stress-strain approach, which is implemented using data at both single and multiple PEEP levels. Estimated values are compared to clinically measured values to assess the reliability of each method for each cohort individually and combined.
The stress-strain multiple breath (at multiple PEEP levels) method produced an overall correlation coefficient R2 = 0.966. The stress-strain single breath method produced R2 = 0.530. The single compartment single breath method produced R2 = 0.415. A combined method at single and multiple PEEP levels produced R2 = 0.963.
The results suggest that model-based, single breath and non-invasive approaches to estimating dFRC may be viable in a clinical scenario, ensuring no interruption to MV. The models provide a means of estimating dFRC at any PEEP level. However, model limitations and large estimation errors limit the use of the methods at very low PEEP.</description><subject>Acute respiratory distress syndrome</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Anesthesia & intensive care</subject><subject>Anesthésie & soins intensifs</subject><subject>Artificial respiration</subject><subject>Care and treatment</subject><subject>Comparative analysis</subject><subject>Complications and side effects</subject><subject>Continuous positive airway pressure</subject><subject>Data processing</subject><subject>Female</subject><subject>Functional Residual Capacity</subject><subject>Human health sciences</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Internet</subject><subject>Lung</subject><subject>Lung - physiopathology</subject><subject>Lung Volume Measurements</subject><subject>Lungs</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Mortality</subject><subject>Positive-Pressure Respiration - methods</subject><subject>Pressure</subject><subject>Recruitment</subject><subject>Reproducibility of Results</subject><subject>Respiration, Artificial - methods</subject><subject>Respiratory distress syndrome</subject><subject>Respiratory Distress Syndrome, Adult - physiopathology</subject><subject>Respiratory Distress Syndrome, Adult - therapy</subject><subject>Respiratory therapy</subject><subject>Respiratory tract</subject><subject>Retrospective Studies</subject><subject>Sciences de la santé humaine</subject><subject>Ventilation</subject><subject>Young Adult</subject><issn>1475-925X</issn><issn>1475-925X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkstrFTEUhwdR7EO3LmXAjS6m5j2TjXC52FooCFVB3IRMcmaakju5JjOl_e_NTB_2SkGySDjnO7-cV1G8wegI40Z8xKzmlST8usKkks-K_XvDz-eP3nvFQUqXCBGEhHxZ7BFKRSMbsl_8Wg3a3ySXytCV1nUdRBjGchMs-KrVCWypt9sYtLmAVHYhlpBGt9GjG_rSHp-vF1sE7atshhn2zmR3GF4VLzrtE7y-uw-LH8efv6-_VGdfT07Xq7PKcCnGChptSEsws5RRLDSTAJaLhlne1JaSrpZgSWu0bnHdCSRoLRAzuXiieSsbelh8utXdTu0GrMn5R-3VNuY0440K2qldz-AuVB-uFOVSMiyzAL0V8A56UCG2Tl2RJXB5T75X2qgWFCGiUZgRxFmOen_3bQy_p9wVtXHJgPd6gDAlhSmhDaJoyfB_KK4bTgnGGX33D3oZpphntFBckpxw_ZfqtQflhi7kwswsqlacMsGZQCRTR09Q-VjYOBMG6Fy27wR82AnIzAjXY6-nlNTpt_MnxU0MKUXoHhqOkZpXU83bp-btU5iouctvH4_pAb_fRfoH2pTb7g</recordid><startdate>20130131</startdate><enddate>20130131</enddate><creator>van Drunen, Erwin J</creator><creator>Chase, J Geoffrey</creator><creator>Chiew, Yeong Shiong</creator><creator>Shaw, Geoffrey M</creator><creator>Desaive, Thomas</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>Q33</scope><scope>5PM</scope></search><sort><creationdate>20130131</creationdate><title>Analysis of different model-based approaches for estimating dFRC for real-time application</title><author>van Drunen, Erwin J ; Chase, J Geoffrey ; Chiew, Yeong Shiong ; Shaw, Geoffrey M ; Desaive, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-e8ac2b214d34316a49eed5684d587d32f79ed2bcaab17f60637604c1862a5b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acute respiratory distress syndrome</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Anesthesia & intensive care</topic><topic>Anesthésie & soins intensifs</topic><topic>Artificial respiration</topic><topic>Care and treatment</topic><topic>Comparative analysis</topic><topic>Complications and side effects</topic><topic>Continuous positive airway pressure</topic><topic>Data processing</topic><topic>Female</topic><topic>Functional Residual Capacity</topic><topic>Human health sciences</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Internet</topic><topic>Lung</topic><topic>Lung - physiopathology</topic><topic>Lung Volume Measurements</topic><topic>Lungs</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Mortality</topic><topic>Positive-Pressure Respiration - methods</topic><topic>Pressure</topic><topic>Recruitment</topic><topic>Reproducibility of Results</topic><topic>Respiration, Artificial - methods</topic><topic>Respiratory distress syndrome</topic><topic>Respiratory Distress Syndrome, Adult - physiopathology</topic><topic>Respiratory Distress Syndrome, Adult - therapy</topic><topic>Respiratory therapy</topic><topic>Respiratory tract</topic><topic>Retrospective Studies</topic><topic>Sciences de la santé humaine</topic><topic>Ventilation</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Drunen, Erwin J</creatorcontrib><creatorcontrib>Chase, J Geoffrey</creatorcontrib><creatorcontrib>Chiew, Yeong Shiong</creatorcontrib><creatorcontrib>Shaw, Geoffrey M</creatorcontrib><creatorcontrib>Desaive, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical engineering online</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Drunen, Erwin J</au><au>Chase, J Geoffrey</au><au>Chiew, Yeong Shiong</au><au>Shaw, Geoffrey M</au><au>Desaive, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of different model-based approaches for estimating dFRC for real-time application</atitle><jtitle>Biomedical engineering online</jtitle><addtitle>Biomed Eng Online</addtitle><date>2013-01-31</date><risdate>2013</risdate><volume>12</volume><issue>1</issue><spage>9</spage><epage>9</epage><pages>9-9</pages><issn>1475-925X</issn><eissn>1475-925X</eissn><abstract>Acute Respiratory Distress Syndrome (ARDS) is characterized by inflammation, filling of the lung with fluid and the collapse of lung units. Mechanical ventilation (MV) is used to treat ARDS using positive end expiratory pressure (PEEP) to recruit and retain lung units, thus increasing pulmonary volume and dynamic functional residual capacity (dFRC) at the end of expiration. However, simple, non-invasive methods to estimate dFRC do not exist.
Four model-based methods for estimating dFRC are compared based on their performance on two separate clinical data cohorts. The methods are derived from either stress-strain theory or a single compartment lung model, and use commonly controlled or measured parameters (lung compliance, plateau airway pressure, pressure-volume (PV) data). Population constants are determined for the stress-strain approach, which is implemented using data at both single and multiple PEEP levels. Estimated values are compared to clinically measured values to assess the reliability of each method for each cohort individually and combined.
The stress-strain multiple breath (at multiple PEEP levels) method produced an overall correlation coefficient R2 = 0.966. The stress-strain single breath method produced R2 = 0.530. The single compartment single breath method produced R2 = 0.415. A combined method at single and multiple PEEP levels produced R2 = 0.963.
The results suggest that model-based, single breath and non-invasive approaches to estimating dFRC may be viable in a clinical scenario, ensuring no interruption to MV. The models provide a means of estimating dFRC at any PEEP level. However, model limitations and large estimation errors limit the use of the methods at very low PEEP.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>23368982</pmid><doi>10.1186/1475-925x-12-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-925X |
ispartof | Biomedical engineering online, 2013-01, Vol.12 (1), p.9-9 |
issn | 1475-925X 1475-925X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3599419 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Acute respiratory distress syndrome Adult Aged Aged, 80 and over Anesthesia & intensive care Anesthésie & soins intensifs Artificial respiration Care and treatment Comparative analysis Complications and side effects Continuous positive airway pressure Data processing Female Functional Residual Capacity Human health sciences Humans Inflammation Internet Lung Lung - physiopathology Lung Volume Measurements Lungs Male Middle Aged Models, Biological Mortality Positive-Pressure Respiration - methods Pressure Recruitment Reproducibility of Results Respiration, Artificial - methods Respiratory distress syndrome Respiratory Distress Syndrome, Adult - physiopathology Respiratory Distress Syndrome, Adult - therapy Respiratory therapy Respiratory tract Retrospective Studies Sciences de la santé humaine Ventilation Young Adult |
title | Analysis of different model-based approaches for estimating dFRC for real-time application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20different%20model-based%20approaches%20for%20estimating%20dFRC%20for%20real-time%20application&rft.jtitle=Biomedical%20engineering%20online&rft.au=van%20Drunen,%20Erwin%20J&rft.date=2013-01-31&rft.volume=12&rft.issue=1&rft.spage=9&rft.epage=9&rft.pages=9-9&rft.issn=1475-925X&rft.eissn=1475-925X&rft_id=info:doi/10.1186/1475-925x-12-9&rft_dat=%3Cgale_pubme%3EA534654602%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1315924197&rft_id=info:pmid/23368982&rft_galeid=A534654602&rfr_iscdi=true |