IS200/IS605 family single-strand transposition: mechanism of IS608 strand transfer

Transposase, TnpA, of the IS200/IS605 family member IS608, catalyses single-strand DNA transposition and is dimeric with hybrid catalytic sites composed of an HUH motif from one monomer and a catalytic Y127 present in an α-helix (αD) from the other (trans configuration). αD is attached to the main b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2013-03, Vol.41 (5), p.3302-3313
Hauptverfasser: He, Susu, Guynet, Catherine, Siguier, Patricia, Hickman, Alison B, Dyda, Fred, Chandler, Mick, Ton-Hoang, Bao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3313
container_issue 5
container_start_page 3302
container_title Nucleic acids research
container_volume 41
creator He, Susu
Guynet, Catherine
Siguier, Patricia
Hickman, Alison B
Dyda, Fred
Chandler, Mick
Ton-Hoang, Bao
description Transposase, TnpA, of the IS200/IS605 family member IS608, catalyses single-strand DNA transposition and is dimeric with hybrid catalytic sites composed of an HUH motif from one monomer and a catalytic Y127 present in an α-helix (αD) from the other (trans configuration). αD is attached to the main body by a flexible loop. Although the reactions leading to excision of a transposition intermediate are well characterized, little is known about the dynamic behaviour of the transpososome that drives this process. We provide evidence strongly supporting a strand transfer model involving rotation of both αD helices from the trans to the cis configuration (HUH and Y residues from the same monomer). Studies with TnpA heterodimers suggest that TnpA cleaves DNA in the trans configuration, and that the catalytic tyrosines linked to the 5'-phosphates exchange positions to allow rejoining of the cleaved strands (strand transfer) in the cis configuration. They further imply that, after excision of the transposon junction, TnpA should be reset to a trans configuration before the cleavage required for integration. Analysis also suggests that this mechanism is conserved among members of the IS200/IS605 family.
doi_str_mv 10.1093/nar/gkt014
format Article
fullrecord <record><control><sourceid>pubmed_hal_p</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3597680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23345619</sourcerecordid><originalsourceid>FETCH-LOGICAL-h300t-75e92cadde8f3b7ce241c3e3448d094ab36aa22b17a95e2076c1e101f299397a3</originalsourceid><addsrcrecordid>eNpdkE9Lw0AQxRdRbK1e_ACyVw-xszub3awHoRS1hYJg9Rw2yaZZzZ-STQv99qZUpXqZgZnfe_MYQq4Z3DHQOK5NO159dsDECRkylDwQWvJTMgSEMGAgogG58P4DeoKF4pwMOKIIJdND8jpfcoDxfCkhpLmpXLmj3tWr0ga-a02d0X3168a7zjX1Pa1sWpja-Yo2Od3LInoM5ra9JGe5Kb29-u4j8v70-DadBYuX5_l0sggKBOgCFVrNU5NlNsoxUanlgqVoUYgoAy1MgtIYzhOmjA4tByVTZhmwnGuNWhkckYeD73qTVDZLbd0nKON16yrT7uLGuPjvpnZFvGq2MYZayQh6g9uDQfFPNpss4v0M-hxSod6ynr05PvaL_3wSvwDyYHSq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>IS200/IS605 family single-strand transposition: mechanism of IS608 strand transfer</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>He, Susu ; Guynet, Catherine ; Siguier, Patricia ; Hickman, Alison B ; Dyda, Fred ; Chandler, Mick ; Ton-Hoang, Bao</creator><creatorcontrib>He, Susu ; Guynet, Catherine ; Siguier, Patricia ; Hickman, Alison B ; Dyda, Fred ; Chandler, Mick ; Ton-Hoang, Bao</creatorcontrib><description>Transposase, TnpA, of the IS200/IS605 family member IS608, catalyses single-strand DNA transposition and is dimeric with hybrid catalytic sites composed of an HUH motif from one monomer and a catalytic Y127 present in an α-helix (αD) from the other (trans configuration). αD is attached to the main body by a flexible loop. Although the reactions leading to excision of a transposition intermediate are well characterized, little is known about the dynamic behaviour of the transpososome that drives this process. We provide evidence strongly supporting a strand transfer model involving rotation of both αD helices from the trans to the cis configuration (HUH and Y residues from the same monomer). Studies with TnpA heterodimers suggest that TnpA cleaves DNA in the trans configuration, and that the catalytic tyrosines linked to the 5'-phosphates exchange positions to allow rejoining of the cleaved strands (strand transfer) in the cis configuration. They further imply that, after excision of the transposon junction, TnpA should be reset to a trans configuration before the cleavage required for integration. Analysis also suggests that this mechanism is conserved among members of the IS200/IS605 family.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkt014</identifier><identifier>PMID: 23345619</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Sequence ; Amino Acid Substitution ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Base Sequence ; Biochemistry, Molecular Biology ; Catalytic Domain ; Consensus Sequence ; DNA Cleavage ; DNA Transposable Elements ; DNA, Bacterial - genetics ; Electrophoretic Mobility Shift Assay ; Escherichia coli ; Helicobacter pylori - enzymology ; Helicobacter pylori - genetics ; Inverted Repeat Sequences ; Life Sciences ; Molecular biology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Nucleic Acid Enzymes ; Plasmids - genetics ; Transposases - chemistry ; Transposases - genetics ; Transposases - metabolism</subject><ispartof>Nucleic acids research, 2013-03, Vol.41 (5), p.3302-3313</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2013. Published by Oxford University Press. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1620-6495 ; 0000-0002-0292-6662 ; 0000-0003-1970-3411 ; 0000-0002-1785-6134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597680/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597680/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23345619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00946739$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Susu</creatorcontrib><creatorcontrib>Guynet, Catherine</creatorcontrib><creatorcontrib>Siguier, Patricia</creatorcontrib><creatorcontrib>Hickman, Alison B</creatorcontrib><creatorcontrib>Dyda, Fred</creatorcontrib><creatorcontrib>Chandler, Mick</creatorcontrib><creatorcontrib>Ton-Hoang, Bao</creatorcontrib><title>IS200/IS605 family single-strand transposition: mechanism of IS608 strand transfer</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Transposase, TnpA, of the IS200/IS605 family member IS608, catalyses single-strand DNA transposition and is dimeric with hybrid catalytic sites composed of an HUH motif from one monomer and a catalytic Y127 present in an α-helix (αD) from the other (trans configuration). αD is attached to the main body by a flexible loop. Although the reactions leading to excision of a transposition intermediate are well characterized, little is known about the dynamic behaviour of the transpososome that drives this process. We provide evidence strongly supporting a strand transfer model involving rotation of both αD helices from the trans to the cis configuration (HUH and Y residues from the same monomer). Studies with TnpA heterodimers suggest that TnpA cleaves DNA in the trans configuration, and that the catalytic tyrosines linked to the 5'-phosphates exchange positions to allow rejoining of the cleaved strands (strand transfer) in the cis configuration. They further imply that, after excision of the transposon junction, TnpA should be reset to a trans configuration before the cleavage required for integration. Analysis also suggests that this mechanism is conserved among members of the IS200/IS605 family.</description><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Biochemistry, Molecular Biology</subject><subject>Catalytic Domain</subject><subject>Consensus Sequence</subject><subject>DNA Cleavage</subject><subject>DNA Transposable Elements</subject><subject>DNA, Bacterial - genetics</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Escherichia coli</subject><subject>Helicobacter pylori - enzymology</subject><subject>Helicobacter pylori - genetics</subject><subject>Inverted Repeat Sequences</subject><subject>Life Sciences</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Nucleic Acid Enzymes</subject><subject>Plasmids - genetics</subject><subject>Transposases - chemistry</subject><subject>Transposases - genetics</subject><subject>Transposases - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE9Lw0AQxRdRbK1e_ACyVw-xszub3awHoRS1hYJg9Rw2yaZZzZ-STQv99qZUpXqZgZnfe_MYQq4Z3DHQOK5NO159dsDECRkylDwQWvJTMgSEMGAgogG58P4DeoKF4pwMOKIIJdND8jpfcoDxfCkhpLmpXLmj3tWr0ga-a02d0X3168a7zjX1Pa1sWpja-Yo2Od3LInoM5ra9JGe5Kb29-u4j8v70-DadBYuX5_l0sggKBOgCFVrNU5NlNsoxUanlgqVoUYgoAy1MgtIYzhOmjA4tByVTZhmwnGuNWhkckYeD73qTVDZLbd0nKON16yrT7uLGuPjvpnZFvGq2MYZayQh6g9uDQfFPNpss4v0M-hxSod6ynr05PvaL_3wSvwDyYHSq</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>He, Susu</creator><creator>Guynet, Catherine</creator><creator>Siguier, Patricia</creator><creator>Hickman, Alison B</creator><creator>Dyda, Fred</creator><creator>Chandler, Mick</creator><creator>Ton-Hoang, Bao</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1620-6495</orcidid><orcidid>https://orcid.org/0000-0002-0292-6662</orcidid><orcidid>https://orcid.org/0000-0003-1970-3411</orcidid><orcidid>https://orcid.org/0000-0002-1785-6134</orcidid></search><sort><creationdate>20130301</creationdate><title>IS200/IS605 family single-strand transposition: mechanism of IS608 strand transfer</title><author>He, Susu ; Guynet, Catherine ; Siguier, Patricia ; Hickman, Alison B ; Dyda, Fred ; Chandler, Mick ; Ton-Hoang, Bao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h300t-75e92cadde8f3b7ce241c3e3448d094ab36aa22b17a95e2076c1e101f299397a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Biochemistry, Molecular Biology</topic><topic>Catalytic Domain</topic><topic>Consensus Sequence</topic><topic>DNA Cleavage</topic><topic>DNA Transposable Elements</topic><topic>DNA, Bacterial - genetics</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Escherichia coli</topic><topic>Helicobacter pylori - enzymology</topic><topic>Helicobacter pylori - genetics</topic><topic>Inverted Repeat Sequences</topic><topic>Life Sciences</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Nucleic Acid Enzymes</topic><topic>Plasmids - genetics</topic><topic>Transposases - chemistry</topic><topic>Transposases - genetics</topic><topic>Transposases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Susu</creatorcontrib><creatorcontrib>Guynet, Catherine</creatorcontrib><creatorcontrib>Siguier, Patricia</creatorcontrib><creatorcontrib>Hickman, Alison B</creatorcontrib><creatorcontrib>Dyda, Fred</creatorcontrib><creatorcontrib>Chandler, Mick</creatorcontrib><creatorcontrib>Ton-Hoang, Bao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Susu</au><au>Guynet, Catherine</au><au>Siguier, Patricia</au><au>Hickman, Alison B</au><au>Dyda, Fred</au><au>Chandler, Mick</au><au>Ton-Hoang, Bao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IS200/IS605 family single-strand transposition: mechanism of IS608 strand transfer</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>41</volume><issue>5</issue><spage>3302</spage><epage>3313</epage><pages>3302-3313</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Transposase, TnpA, of the IS200/IS605 family member IS608, catalyses single-strand DNA transposition and is dimeric with hybrid catalytic sites composed of an HUH motif from one monomer and a catalytic Y127 present in an α-helix (αD) from the other (trans configuration). αD is attached to the main body by a flexible loop. Although the reactions leading to excision of a transposition intermediate are well characterized, little is known about the dynamic behaviour of the transpososome that drives this process. We provide evidence strongly supporting a strand transfer model involving rotation of both αD helices from the trans to the cis configuration (HUH and Y residues from the same monomer). Studies with TnpA heterodimers suggest that TnpA cleaves DNA in the trans configuration, and that the catalytic tyrosines linked to the 5'-phosphates exchange positions to allow rejoining of the cleaved strands (strand transfer) in the cis configuration. They further imply that, after excision of the transposon junction, TnpA should be reset to a trans configuration before the cleavage required for integration. Analysis also suggests that this mechanism is conserved among members of the IS200/IS605 family.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>23345619</pmid><doi>10.1093/nar/gkt014</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1620-6495</orcidid><orcidid>https://orcid.org/0000-0002-0292-6662</orcidid><orcidid>https://orcid.org/0000-0003-1970-3411</orcidid><orcidid>https://orcid.org/0000-0002-1785-6134</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2013-03, Vol.41 (5), p.3302-3313
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3597680
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Amino Acid Substitution
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Base Sequence
Biochemistry, Molecular Biology
Catalytic Domain
Consensus Sequence
DNA Cleavage
DNA Transposable Elements
DNA, Bacterial - genetics
Electrophoretic Mobility Shift Assay
Escherichia coli
Helicobacter pylori - enzymology
Helicobacter pylori - genetics
Inverted Repeat Sequences
Life Sciences
Molecular biology
Molecular Sequence Data
Mutagenesis, Site-Directed
Nucleic Acid Enzymes
Plasmids - genetics
Transposases - chemistry
Transposases - genetics
Transposases - metabolism
title IS200/IS605 family single-strand transposition: mechanism of IS608 strand transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IS200/IS605%20family%20single-strand%20transposition:%20mechanism%20of%20IS608%20strand%20transfer&rft.jtitle=Nucleic%20acids%20research&rft.au=He,%20Susu&rft.date=2013-03-01&rft.volume=41&rft.issue=5&rft.spage=3302&rft.epage=3313&rft.pages=3302-3313&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkt014&rft_dat=%3Cpubmed_hal_p%3E23345619%3C/pubmed_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23345619&rfr_iscdi=true